• Title/Summary/Keyword: dynamic material properties

Search Result 834, Processing Time 0.028 seconds

Effect of temperature on the rheological properties of dental interocclusal recording materials

  • Pae, Ahran;Lee, Ho-Rim;Kim, Hyeong-Seob
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.221-226
    • /
    • 2008
  • The purpose of this study was to compare rheological properties of six dental interocclusal recording materials and to investigate the effect of temperature on the rheological properties during setting. Five polyvinylsiloxane materials and one polyether material were investigated in this study. The storage modulus (G') and the loss factor ($tan{\delta}$) were measured from 30s after mixing during setting, using the universal dynamic spectrometer. Viscoelastic properties were evaluated by means of G' and $tan{\delta}$ from 5 repeats at $21^{\circ}C$ and $33^{\circ}C$. Individual changes during setting were also evaluated. All data were statistically analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test at the significance level of 0.05. The mean of G was checked at $t_{set}$ (the setting time provided from manufacturer) and $t_{300}$ (the end of experimental time) and the mean of $tan{\delta}$ was checked at to and $t_{set}$. Whereas the increase of the G' value showed generally exponential changes at $21^{\circ}C$, the change of the G' value at $33^{\circ}C$ displayed sigmoidal curves during setting. The change of loss factor $tan{\delta}$ during setting varied. Within the limitations of this study, dental interocclusal recording materials had different viscoelastic properties and most of the materials showed different fluidity at $21^{\circ}C$ and $33^{\circ}C$.

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S.;Madhusudan, M.;Vidyashankar, S.;Lu, Y. Charles
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy (육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과)

  • Song, Kuk Hyun;Hong, Do Hyeong;Yang, Byung Mo
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.

Development of Eco-friendly Pavement Material using Polyurethane Binder (폴리우레탄 바인더를 활용한 친환경 도로포장용 혼합물 개발)

  • Choi, Ji Young;An, Young Jun;Park, Hee Mun;Kim, Tae Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • PURPOSES : The objectives of this study are to develop the eco-friendly pavement material using polyurethane binder and evaluate mechanical properties of the developed binder and concrete. METHODS : The bending beam test was conducted to select the sample candidates of polyurethane binder based on the bending strength. The characteristics of viscosity, curing time, and temperature change of sample binder was examined on different temperature conditions. The mechanical properties of polyurethane binder was estimated using the dynamic modulus testing. The indirect tensile strength test was conducted on polyurethane binder concrete with different gradation and binder content for evaluating the mechanical properties of concretes. RESULTS : Based on the beading beam test, four different binder samples were prepared for estimate the mechanical properties. The viscosity of polyurethane binder tends to increase with increase of liquid temperature and the hardening phenomenon begins 10 to 15 minutes at room temperature after mixing the resin and hardener. It is observed that the dynamic modulus of binder increases as loading frequency increases and change of modulus is found to be the highest in the PU-2I binder type. The PU-2I binder concretes shows the largest value of indirect tensile strength and indirect tensile energy. CONCLUSIONS : The use of polyurethane binder as pavement materials is capable of increasing the pavement performance and reducing the detrimental environmental effect during the highway construction.

Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure (벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용)

  • Yoo, Seung-Yup;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

Resonant Properties of Modified $PvTiO_3$System Ceramics for High frequency Resonator (고주파 레조네이터용 변성 $PvTiO_3$계 세라믹스의 공진특성)

  • 민석규;류주현;박창엽;김종선;윤현상;정회승
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.976-980
    • /
    • 2001
  • In this study, P $b_{0.88}$(L $a_{a}$N $d_{l-a}$)$_{0.08}$(M $n_{1}$3/S $b_{2}$3/)$_{0.02}$ $Ti_{0.98}$ $O_3$system ceramics were manufactured for 20 MHz class resonator application. Electromechanical coupling factor, mechanical quality factor and dynamic range of 3rd overtone thickness vibration mode were measured as the variations of La and Nd molar ratio. Mechanical quality factor and dynamic range at $\alpha$=0.6 composition ceramics showed the highest value of 2, 691 and 52.37 dB, respectively. The tempearture coefficient of resonant frequency measured from -2$0^{\circ}C$ to 8$0^{\circ}C$ showed an excellent value of 5ppm/$^{\circ}C$ at $\alpha$ = 1 composition ceramics. ceramics.s.

  • PDF