• Title/Summary/Keyword: dynamic material properties

Search Result 834, Processing Time 0.025 seconds

A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad (에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Sohn, Ho-Soung
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2000
  • In order to investigate the possibility of EPDM micro cellular pad (MCP) as an impact sound insulation product, we studied static/dynamic properties and vibration transfer characteristics of EPDM MCP depending on shape, thickness, degrees of foaming by using material test system (MTS) and lab scale mock-up test apparatus. Static/dynamic rigidity is increased when shape is simple. thickness and degrees of foaming low. We could see that dynamic stiffness is proportional to the transmissibility of EPDM MCP. When dynamic stiffness is increased, characteristic peak at transmissibility curve moves high frequency range or snows increase of maximum value of transmissibility. For lab scale mock-up test and finite element method, EPDM MCP shows low vibration velocity and superior mode shape to just concrete plus slab structure. We could confirm that possibility of EPDM MCP as a impact sound insulation product is high.

  • PDF

경면 연삭기 베드를 위한 레진 콘크리트에 관한 연구

  • 김현석;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.108-113
    • /
    • 1993
  • The material for the machine tool structure should have high static stiffiness and damping in its property to improve both the static and dynamic performances. The static stiffness of a machine tool can be inceased by using either higher modulus material in the structure of a machine tool. However, the machine tool structrue with high stiffness but low damping is vulnerable to vibration at the resonance frequencies of the structure . For the high precision and highsped machine tool structure, therefore, the high damping capacity is most important in order to suppress vibration. The damping of a machine tool can not be increased by increasing the static stiffness. The best way to increase the damping capacity of the machine tool structure is to use a composite material which is composed of on material with high stiffness with low damping and another material with low stiffness with high damping. Therefore, in this paper, the bed of the ultra high precision grinding machine for mirror surface machining of brittle materials such as ceramics and composite materials was designed and manufactured with the epoxy concrete material. The epoxy concrete material was prepared by mixing epoxy resin with different size sands and gravels. The modulus, compressive strength, coefficient of thermal expansion, specific heat, and damping factor were measured by varying the compaction ratio, sizes and contents of the ingredients to assess the effect of the processing parameters on the mechanical properties of the material. Based of the measured properties, the prototype epoxy resin concrete bed for the mirror surface CNC grinding machine was designed and manufactured.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Finite Element Shear Analysis of 3-bar Lap Rubber Specimen for High Damping Rubber Bearing (고감쇠 면진베어링 고무시편의 유한요소 전단해석)

  • Lee, Jae-Han;Yoo, Bong;Park, Ki-Su
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.419-425
    • /
    • 2001
  • The shear modulus of 3-bar lap rubber shear dynamic test specimen is investigated through incremented shear strain tests. The shear force-strain relation of rubber specimen is also calculated by ABAQUS using hyper-elastic material properties of high damping rubber. The analysis results are compatible with shear dynamic tests of 3-bar lap rubber specimen and 1/8 reduced-scale laminated rubber bearing

  • PDF

A Study on the Behavior Character of Roadbed in High-Speed Railway Slab Tract (고속전철 슬레브궤도에서의 노반거동 특성에 관한 연구)

  • 조용권;이성혁;황선근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.319-326
    • /
    • 2000
  • It is investigated character of the dynamic behavior at over excavation zone of roadbed using crushed stone instead of lean concrete. It is considered that behavior of roadbed using PENTAGON-3D and Baber's equation. Typical load of sine wave type using impact factor is compared to moving load system to examine relationship in using PENTAGON-3D case. Variations of this paper are material properties of roadbed, train velocity, subgrade bearing capacity. Using variations, safety of roadbed is estimated by dynamic behavior character.

  • PDF

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

  • Assie, Amr;Akbas, Seref D.;Kabeel, Abdallah M.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve -node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

Analysis of Rotor Dynamic Characteristics of AC Traction Motor (전동차용 AC 견인전동기의 진동특성해석)

  • 정춘상;배동진;신상엽;이충동
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.348-354
    • /
    • 1999
  • An AC traction motor was developed, of which the rotor core has an unique structure, made of multi-layered silicon steel plates which were shrink-fitted to a shart. the equivalenet material properties were estimated with a newly proposed efficient method, based on the correlation between finite element analysis results and modal testing. A general rotordynamic analysis for the rotor with the equivalent material properties was carried out to evaluate the structural integrity of the virtually built-up motor.

  • PDF