• 제목/요약/키워드: dynamic load model

검색결과 1,217건 처리시간 0.027초

Dynamic load concentration caused by a break in a Lamina with viscoelastic matrix

  • Reza, Arash;Sedighi, Hamid M.;Soleimani, Mahdi
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1465-1478
    • /
    • 2015
  • The effect of cutting off fibers on transient load in a polymeric matrix composite lamina was studied in this paper. The behavior of fibers was considered to be linear elastic and the matrix behavior was considered to be linear viscoelastic. To model the viscoelastic behavior of matrix, a three parameter solid model was employed. To conduct this research, finite difference method was used. The governing equations were obtained using Shear-lag theory and were solved using boundary and initial conditions before and after the development of break. Using finite difference method, the governing integro-differential equations were developed and normal stress in the fibers is obtained. Particular attention is paid the dynamic overshoot resulting when the fibers are suddenly broken. Results show that considering viscoelastic properties of matrix causes a decrease in dynamic load concentration factor and an increase in static load concentration factor. Also with increases the number of broken fibers, trend of increasing load concentration factor decreases gradually. Furthermore, the overshoot of load in fibers adjacent to the break in a polymeric matrix with high transient time is lower than a matrix with lower transient time, but the load concentration factor in the matrix with high transient time is lower.

단순 보모델을 이용한 측면충돌 해석기술 연구 (A Study on Side Impact Simulation Technique using Simple Beam Model)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.170-177
    • /
    • 1997
  • In this study, an analysis technique using simple beam model for predicting structure crashworthiness of the passenger car side impacted with an angle by another passenger car was investigated. The simple model was composed of major beam-like side structure which carry almost all side impact load. A procedure of component collapse test, calculation of load carrying capability and dynamic simulation was carryed out sequentially. Transient dynamic algorithms and a computer program to simulate deformations and motions of the impacted car was developed. The developed procedure was applied to a 3 door passenger car side impacted with an angle of 75 degree and the analysis results show good agreements with the actual test results.

  • PDF

중하중을 받는 이동로붓의 슬라이딩모드 제어 (Sliding Mode Control for a High-Load Wheeled Mobile Robot)

  • 홍대희;정재훈
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF

연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계 (Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model)

  • 고정민;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

건물냉방부하에 대한 동적 인버스 모델링기법의 EnergyPlus 건물모델 적용을 통한 성능평가 (Performance Evaluation of a Dynamic Inverse Model with EnergyPlus Model Simulation for Building Cooling Loads)

  • 이경호
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.

하중분산효과를 고려한 고속철도교량의 동적해석 (A Study on Dynamic Analysis of High-Speed Railway Bridges Considering Load Distribution Effect)

  • 진원종;윤혜진;곽종원;김병석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1641-1649
    • /
    • 2011
  • Dynamic response of high-speed railway bridges is important due to the possibility of resonance from continuous and repeated action of high-speed train running. The designer's decision and application affect the result of dynamic analysis significantly, therefore guideline for dynamic analysis is required. On the purpose of the selection of resonable model for dynamic analysis, this study investigated load distribution effect.

  • PDF

증배형 부하회복 모델을 포함하는 연속법 기반 준정적 해석 (Continuation-Based Quasi-Steady-State Analysis Incorporating Multiplicative Load Restoration Model)

  • 송화창
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.111-117
    • /
    • 2008
  • This paper presents a new continuation-based quasi-steady-state(CQSS) time-domain simulation algorithm incorporating a multiplicative aggregated load model for power systems. The authors' previous paper introduced a CQSS algorithm, which has the robust convergent characteristic near the singularity point due to the application of a continuation method. The previous CQSS algorithm implemented the load restoration in power systems using the exponent-based load recovery model that is derived from the additive dynamic load model. However, the reformulated exponent-based model causes the inappropriate variation of short-term load characteristics when switching actions occur, during time-domain simulation. This paper depicts how to incorporate a multiplicative load restoration model, which does not have the problem of deforming short-term load characteristics, into the time simulation algorithm, and shows an illustrative example with a 39-bus test system.

On vibrations of functionally graded carbon nanotube (FGCNT) nanoplates under moving load

  • Alaa A. Abdelrahman;Ismail Esen;Mohammed Y. Tharwan;Amr Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.395-412
    • /
    • 2024
  • This article develops a nonclassical size dependent nanoplate model to study the dynamic response of functionally graded carbon nanotube (FGCNT) nanoplates under a moving load. Both nonlocal and microstructure effects are incorporated through the nonlocal strain gradient elasticity theory. To investigate the effect of reinforcement orientation of CNT, four different configurations are studied and analysed. The FGM gradation thorough the thickness direction is simulated using the power law. In the context of the first order shear deformation theory, the dynamic equations of motion and the associated boundary conditions are derived by Hamilton's principle. An analytical solution of the dynamic equations of motion is derived based on the Navier methodology. The proposed model is verified and compared with the available results in the literature and good agreement is found. The numerical results show that the dynamic performance of FGCNT nanoplates could be governed by the reinforcement pattern and volume fraction in addition to the non-classical parameters and the moving load dimensionless parameter. Obtained results are reassuring in design and analysis of nanoplates reinforced with CNTs.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.