• 제목/요약/키워드: dynamic load factor

검색결과 386건 처리시간 0.022초

비대칭 입력 전압 상태를 고려한 LIDVR의 새로운 제어방법 (New Control Scheme for LIDVR Considering Asymmetry Input Voltage Conditions)

  • 한철우;김태진;강대욱;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.510-514
    • /
    • 2002
  • Power Quality and reliability are becoming important issues for critical and sensitive loads. The recent growth in the use of impactive and nonlinear loads has caused many power quality problems such as voltage flicks, harmonics and unbalances, which may cause the modem automatic devices to fail, misoperate, or shut down. This paper deals with 7-Level H-Bridge Line-Interactive Dynamic Voltage Restorer (LIDVR) system. It has the power factor near to unity under normal source voltage, can compensate the harmonic current of the load and instant interruption, and has the fast response. Currently, most of the DVR design studies are based on the assumption of the balanced three-phase system. But, actually line fault occurred $1{\phi}\;{sag}\;or\;2{\phi}$ sag. Hence, proposed new control scheme compensate asymmetry input voltage. Finally, simulation results verify the proposed 7-Level H-Bridge LIDVR system.

  • PDF

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

형상비 3.5 RC교각의 실험 방법에 의한 내진성능 분석 (Seismic Performance Analysis of RC Bridge Piers with 3.5 Aspect Ratio depending on Testing Methods)

  • 홍현기;박창영;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.93-96
    • /
    • 2008
  • 이 논문은 근단층지반운동(NFGM)하에서 내진성능을 평가하기 위한 RC교각의 진동대, 준정적, 유사동적 실험을 다룬다. 5개의 실험체가 수행되었다. 축소 모형을 제작하고 상부구조물의 중량 에 의한 축력의 효과는 프리스트레스에 의해 구현하였다. 지진이 발생할 때 상부 구조물의 횡방향 관성력은 진동대의 제한된 용량 때문에 교각 실험체에 연결한 질량 프레임으로 모사하였다. 특히, 진동대 실험에서 질량 모사 프레임이 교각 모델과 같은 변위로 움직이면서 마찰 효과를 최소화할 수 있도록 고려하였고 이에 대한 검증을 실시하였다. RC교각의 축소 계수를 4.25로 설정 하였다.

  • PDF

실험적 모우드 계수를 이용한 교량의 주행하중 해석 (Moving Load Analysis of Bridge Structures Using Experimental Modal Data)

  • 이형진
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.409-420
    • /
    • 2002
  • 본 논문에서는 상시진동계측 결과를 활용하여 교랑의 이동하중해석을 수행하기 위한 구조재해석 기법을 제시하였다. 구조재해석을 위해 필요한 실구조물의 고유진동수와 모우드 형상은 직접퓨리에 분석을 통해 구하고, 감쇠비는 Random Decrement기법을 이용하는 방법을 사용하였다. 또한, 계측 모우드 형상을 구조재해석에 필요한 자유도로 보간하기 위한 보간법을 제시하였다. 더불어, 제시된 구조재해석기법을 이동질량 모형에 기초한 주행하중 해석에 적용하여 이를 직접 해석한 결과와 비교하였다 해석결과는 상시진동 계측의 결과만을 이용하여 수행된 구조재해석 결과도 교량의 실제 응답을 잘 표현할 수 있음을 보여주고 있다.

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Sliding Mode Control for Servo Motors Based on the Differential Evolution Algorithm

  • Yin, Zhonggang;Gong, Lei;Du, Chao;Liu, Jing;Zhong, Yanru
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.92-102
    • /
    • 2018
  • A sliding mode control (SMC) for servo motors based on the differential evolution (DE) algorithm, called DE-SMC, is proposed in this study. The parameters of SMC should be designed exactly to improve the robustness, realize the precision positioning, and reduce the steady-state speed error of the servo drive. The main parameters of SMC are optimized using the DE algorithm according to the speed feedback information of the servo motor. The most significant influence factor of the DE algorithm is optimization iteration. A suitable iteration can be achieved by the tested optimization process profile of the main parameters of SMC. Once the parameters of SMC are optimized under a convergent iteration, the system realizes the given performance indices within the shortest time. The experiment indicates that the robustness of the system is improved, and the dynamic and steady performance achieves the given performance indices under a convergent iteration when motor parameters mismatch and load disturbance is added. Moreover, the suitable iteration effectively mitigates the low-speed crawling phenomenon in the system. The correctness and effectiveness of DE-SMC are verified through the experiment.

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계 (Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore)

  • 송준호;김용운;이경석;김만수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석 (Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine)

  • 김준배;신현경
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.