• Title/Summary/Keyword: dynamic learning rate

Search Result 95, Processing Time 0.028 seconds

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills (CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계)

  • Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.

Research of Gesture Recognition Technology Based on GMM and SVM Hybrid Model Using EPIC Sensor (EPIC 센서를 이용한 GMM, SVM 기반 동작인식기법에 관한 연구)

  • CHEN, CUI;Kim, Young-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.11-12
    • /
    • 2016
  • SVM (Support Vector machine) is powerful machine-learning method, and obtains better performance than traditional methods in the applications of muti-dimension nonlinear pattern classification. For the case of SVM model training and low efficiency in large samples, this paper proposes a combination of statistical parameters of the GMM-UBM (Universal Background Model) model. It is very effective to solve the problem of the large sample for the SVM training. The experiment is carried on four special dynamic hand gestures using the EPIC sensors. And the results show that the improved dynamic hand gesture recognition system has a high recognition rate up to 96.75%.

  • PDF

Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction (배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.366-369
    • /
    • 2005
  • Background subtraction is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable factor such as gradually changing illumination, swaying trees and suddenly moving objects, which are to be considered for the adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background adaptively considering the various changes in the scenes, and the adaptive GMMs improving the real-time performance were worked. This paper, for on-line background subtraction, applied the improved adaptive GMM, which uses the small constant for learning rate ${\alpha}$ and is not able to speedily adapt the suddenly movement of objects, So, this paper proposed and evaluated the dynamic control method of ${\alpha}$ using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Cooperative Detection of Moving Source Signals in Sensor Networks (센서 네트워크 환경에서 움직이는 소스 신호의 협업 검출 기법)

  • Nguyen, Minh N.H.;Chuan, Pham;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.726-732
    • /
    • 2017
  • In practical distributed sensing and prediction applications over wireless sensor networks (WSN), environmental sensing activities are highly dynamic because of noisy sensory information from moving source signals. The recent distributed online convex optimization frameworks have been developed as promising approaches for solving approximately stochastic learning problems over network of sensors in a distributed manner. Negligence of mobility consequence in the original distributed saddle point algorithm (DSPA) could strongly affect the convergence rate and stability of learning results. In this paper, we propose an integrated sliding windows mechanism in order to stabilize predictions and achieve better convergence rates in cooperative detection of a moving source signal scenario.

A Localized Adaptive QoS Routing Scheme Using POMDP and Exploration Bonus Techniques (POMDP와 Exploration Bonus를 이용한 지역적이고 적응적인 QoS 라우팅 기법)

  • Han Jeong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.175-182
    • /
    • 2006
  • In this paper, we propose a Localized Adaptive QoS Routing Scheme using POMDP and Exploration Bonus Techniques. Also, this paper shows that CEA technique using expectation values can be simply POMDP problem, because performing dynamic programming to solve a POMDP is highly computationally expensive. And we use Exploration Bonus to search detour path better than current path. For this, we proposed the algorithm(SEMA) to search multiple path. Expecially, we evaluate performances of service success rate and average hop count with $\phi$ and k performance parameters, which is defined as exploration count and intervals. As result, we knew that the larger $\phi$, the better detour path search. And increasing n increased the amount of exploration.

Development of a neural-based model for forecating link travel times (신경망 이론에 의한 링크 통행시간 예측모형의 개발)

  • 박병규;노정현;정하욱
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.95-110
    • /
    • 1995
  • n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .

  • PDF

An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure (이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법)

  • Choi, Hyeon-Jong;Noh, Dae-Cheol;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.66-74
    • /
    • 2018
  • Recently, there has been active studies on hand gesture recognition to increase immersion and provide user-friendly interaction in a virtual reality environment. However, most studies require specialized sensors or equipment, or show low recognition rates. This paper proposes a hand gesture recognition method using Deep Learning technology without separate sensors or equipment other than camera to recognize static and dynamic hand gestures. First, a series of hand gesture input images are converted into high-frequency images, then each of the hand gestures RGB images and their high-frequency images is learned through the DenseNet three-dimensional Convolutional Neural Network. Experimental results on 6 static hand gestures and 9 dynamic hand gestures showed an average of 92.6% recognition rate and increased 4.6% compared to previous DenseNet. The 3D defense game was implemented to verify the results of our study, and an average speed of 30 ms of gesture recognition was found to be available as a real-time user interface for virtual reality applications.

Web-based University Classroom Attendance System Based on Deep Learning Face Recognition

  • Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.503-523
    • /
    • 2022
  • Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.

Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

  • Luo, Shi-qi;Ni, Bo;Jiang, Ping;Tian, Sheng-wei;Yu, Long;Wang, Rui-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3654-3670
    • /
    • 2019
  • This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.