This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.
A clustering algorithms with dynamic adjustment of learning rate for GBFCM(Gradient Based FCM) is proposed in this paper. This algorithm combines two idea of dynamic K-means algorithms and GBFCM : learning rate variation with entropy concept and continuous membership grade. To evaluate dynamic GBFCM, we made comparisons with Kohonen's Self-Organizing Map over several tutorial examples and image compression. The results show that DGBFCM(Dynamic GBFCM) gives superior performance over Kohonen's algorithm in terms of signal-to-noise.
In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.
본 논문에서는 순차적 학습 방법에서의 동적 모멘트를 제안한다. 동적 모멘트에서의 가변적인 모멘트를 이용하여 수렴 속도와 학습 성능을 향상시키며 회귀율에서도 이를 확인할 수 있다 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 달리 반영하는 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습 방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴 속도와 학습 성능을 효과적으로 제어할 수 있다. 이전의 분류문제와 회귀문제의 분리확인과는 달리 본 논문에서는 제안된 동적모멘트의 성능과 회귀율을 동시에 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(Support Vector Machine)의 순차 학습방법인 KA(Kernel Adatron)과 KR(Kernel Relaxation)에 적용하여 RMS 오류율을 확인하였다. 공정한 학습 성능 평가를 위해 신경망 분류기표준평가데이터인 SONAR 데이터를 이용하였으며 실험 결과 동적모멘트를 이용한 학습 성능과 수렴 속도 및 RMS 오류율이 정적모멘트를 이용한 학습방법보다 향상되었음을 확인하였다.
A better tracking performance can be achieved, if visual sensors such as CCD cameras are used in controling a robot manipulator, than when only relative sensors such as encoders are used. However, for precise visual servoing of a robot manipulator, an expensive vision system which has fast sampling rate must be used. Moreover, even if a fast vision system is implemented for visual servoing, one cannot get a reliable performance without use of robust and stable inner joint servo-loop. In this paper, we propose a dynamic control scheme for robot manipulators with eye-in-hand camera configuration, where a dynamic learning controller is designed to improve the tracking performance of robotic system. The proposed control scheme is implemented for tasks of tracking moving objects and shown to be robust to parameter uncertainty, disturbances, low sampling rate, etc.
기존 Kohonen의 자기조직화 지도(self-organizing feature map)는 학습시 많은 입력 패턴이 필요하며 이에 따른 학습 시간 역시 증가하는 단점이 있다. 이러한 단점을 보완하기 위해 B. Bavarian은 위상학적 위치에 따라 각기 다른 학습률(learning rate)을 갖도록 하였으나 자기조직화가 정밀하게 되지 않는 단점을 갖고 있다. 본 논문에서는 자기조직화 지도의 학습시 계산량이 많은 가우시안 함수를 근사곡선(approximate curve)으로 변형하여 수렴속도를 향상시켰고 학습 횟수에 따라 근사곡선의 폭을 동적으로 변화시킴으로써 자기조직화지도의 수렴도를 개선하였다.
3D-CNN은 시계열 데이터 학습을 위한 딥 러닝 기법 중 하나이다. 이러한 3차원 학습은 많은 매개변수를 생성할 수 있으므로 고성능 기계학습이 필요하거나 학습 속도에 커다란 영향을 미칠 수 있다. 본 연구에서는 손의 동적인 제스처 동작을 시공간적으로 학습할 때, 3D-CNN 모델의 구조적 변화 없이 입력 영상 데이터의 시공간적 변화에 따른 학습 정확성을 분석함으로써, 3D-CNN을 이용한 동적 제스처 학습의 효율성을 높이기 위한 입력 영상 데이터의 최적 조건을 찾고자 한다. 첫 번째로 동적 손 제스처 영상 데이터에서 동적 이미지 프레임의 학습구간을 설정함으로써 제스처 동작간 시간 비율을 조정한다. 둘째로는 클래스간 2차원 교차 상관 분석을 통해 영상 데이터의 이미지 프레임간 유사도를 측정하여 정규화 함으로써 프레임간 평균값을 얻고 학습 정확성을 분석한다. 이러한 분석을 통하여, 동적 손 제스처의 3D-CNN 딥 러닝을 위한 입력 영상 데이터를 효과적으로 선택하는 두 가지 방법을 제안한다. 실험 결과는 영상 데이터 프레임의 학습구간과 클래스간 이미지 프레임간 유사도가 학습 모델의 정확성에 영향을 미칠 수 있음을 보여준다.
FCM 기반하이브리드 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 알고리즘을 적용한다. 입력층과 중간층의 학습시 입력 벡터와 중간층의 노드 중에서 중심과 입력 벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습구조인 Max_Min 신경망은 중간층의 승자 뉴런이 입력벡터로 적용된다. 그러나 많은 패턴이 입력벡터로 제시될 경우에는 학습성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 향상시키기 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 0.1보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 제어 시스템에 적용하여 학습률을 동적으로 조정한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해 컨테이너에서 추출한 숫자, 영문 식별자를 인식 및 성능평가 실험에 적용한 결과, 제안된 방법이 문자 패턴 인식에 효과적임을 확인할 수 있었다.
This paper presents an approach for the optimal heating load Identification using Diagonal Recurrent Neural Networks(DRNN). In this paper, the DRNN captures the dynamic nature of a system and since it is not fully connected, training is much faster than a fully connected recurrent neural network. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer. The hidden layer is comprised of self-recurrent neurons, each feeding its output only into itself. In this study, A dynamic backpropagation (DBP) with delta-bar-delta learning method is used to train an optimal heating load identifier. Delta-bar-delta learning method is an empirical method to adapt the learning rate gradually during the training period in order to improve accuracy in a short time. The simulation results based on experimental data show that the proposed model is superior to the other methods in most cases, in regard of not only learning speed but also identification accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.