• Title/Summary/Keyword: dynamic human body parameter

Search Result 12, Processing Time 0.016 seconds

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Parameter Estimation of a Friction Model for a Tendon-sheath Mechanism (텐던 구동 시스템의 마찰 모델 파라미터 추정)

  • Jeoung, Haeseong;Lee, Jeongjun;Kim, Namwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • Mechanical systems using tendon-driven actuators have been widely used for bionic robot arms because not only the tendon based actuating system enables the design of robot arm to be very efficient, but also the system is very similar to the mechanism of the human body's operation. The tendon-driven actuator, however, has a drawback caused by the friction force of the sheath. Controlling the system without considering the friction force between the sheath and the tendon could result in a failure to achieve the desired dynamic behaviors. In this study, a mathematical model was introduced to determine the friction force that is changed according to the geometrical pathway of the tendon-sheath, and the model parameters for the friction model were estimated by analyzing the data obtained from dedicated tests designed for evaluating the friction forces. Based on the results, it is possible to appropriately predict the friction force by using the information on the pathway of the tendon.