• Title/Summary/Keyword: dynamic hand gesture

Search Result 40, Processing Time 0.036 seconds

A Study on Dynamic Hand Gesture Recognition Using Neural Networks (신경회로망을 이용한 동적 손 제스처 인식에 관한 연구)

  • 조인석;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

Dynamic Hand Gesture Recognition using Guide Lines (가이드라인을 이용한 동적 손동작 인식)

  • Kim, Kun-Woo;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Generally, dynamic hand gesture recognition is formed through preprocessing step, hand tracking step and hand shape detection step. In this paper, we present advanced dynamic hand gesture recognizing method that improves performance in preprocessing step and hand shape detection step. In preprocessing step, we remove noise fast by using dynamic table and detect skin color exactly on complex background for controling skin color range in skin color detection method using YCbCr color space. Especially, we increase recognizing speed in hand shape detection step through detecting Start Image and Stop Image, that are elements of dynamic hand gesture recognizing, using Guideline. Guideline is edge of input hand image and hand shape for comparing. We perform various experiments with nine web-cam video clips that are separated to complex background and simple background for dynamic hand gesture recognition method in the paper. The result of experiment shows similar recognition ratio but high recognition speed, low cpu usage, low memory usage than recognition method using learning exercise.

Hybrid HMM for Transitional Gesture Classification in Thai Sign Language Translation

  • Jaruwanawat, Arunee;Chotikakamthorn, Nopporn;Werapan, Worawit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1106-1110
    • /
    • 2004
  • A human sign language is generally composed of both static and dynamic gestures. Each gesture is represented by a hand shape, its position, and hand movement (for a dynamic gesture). One of the problems found in automated sign language translation is on segmenting a hand movement that is part of a transitional movement from one hand gesture to another. This transitional gesture conveys no meaning, but serves as a connecting period between two consecutive gestures. Based on the observation that many dynamic gestures as appeared in Thai sign language dictionary are of quasi-periodic nature, a method was developed to differentiate between a (meaningful) dynamic gesture and a transitional movement. However, there are some meaningful dynamic gestures that are of non-periodic nature. Those gestures cannot be distinguished from a transitional movement by using the signal quasi-periodicity. This paper proposes a hybrid method using a combination of the periodicity-based gesture segmentation method with a HMM-based gesture classifier. The HMM classifier is used here to detect dynamic signs of non-periodic nature. Combined with the periodic-based gesture segmentation method, this hybrid scheme can be used to identify segments of a transitional movement. In addition, due to the use of quasi-periodic nature of many dynamic sign gestures, dimensionality of the HMM part of the proposed method is significantly reduced, resulting in computational saving as compared with a standard HMM-based method. Through experiment with real measurement, the proposed method's recognition performance is reported.

  • PDF

A Notation Method for Three Dimensional Hand Gesture

  • Choi, Eun-Jung;Kim, Hee-Jin;Chung, Min-K.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • Objective: The aim of this study is to suggest a notation method for three-dimensional hand gesture. Background: To match intuitive gestures with commands of products, various studies have tried to derive gestures from users. In this case, various gestures for a command are derived due to various users' experience. Thus, organizing the gestures systematically and identifying similar pattern of them have become one of important issues. Method: Related studies about gesture taxonomy and notating sign language were investigated. Results: Through the literature review, a total of five elements of static gesture were selected, and a total of three forms of dynamic gesture were identified. Also temporal variability(reputation) was additionally selected. Conclusion: A notation method which follows a combination sequence of the gesture elements was suggested. Application: A notation method for three dimensional hand gestures might be used to describe and organize the user-defined gesture systematically.

A Framework for 3D Hand Gesture Design and Modeling (삼차원 핸드 제스쳐 디자인 및 모델링 프레임워크)

  • Kwon, Doo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5169-5175
    • /
    • 2013
  • We present a framework for 3D hand gesture design and modeling. We adapted two different pattern matching techniques, Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs), to support the registration and evaluation of 3D hand gestures as well as their recognition. One key ingredient of our framework is a concept for the convenient gesture design and registration using HMMs. DTW is used to recognize hand gestures with a limited training data, and evaluate how the performed gesture is similar to its template gesture. We facilitate the use of visual sensors and body sensors for capturing both locative and inertial gesture information. In our experimental evaluation, we designed 18 example hand gestures and analyzed the performance of recognition methods and gesture features under various conditions. We discuss the variability between users in gesture performance.

Tracking and Recognizing Hand Gestures using Kalman Filter and Continuous Dynamic Programming (연속DP와 칼만필터를 이용한 손동작의 추적 및 인식)

  • 문인혁;금영광
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.13-16
    • /
    • 2002
  • This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.

  • PDF

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Kim, Moon-Hwan;hwang, suen ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

  • PDF