• Title/Summary/Keyword: dynamic friction

Search Result 815, Processing Time 0.028 seconds

A realization of simulator for reliability verification on medium size steam turbine controller (중용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Woo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2578-2580
    • /
    • 2000
  • A siumlator had been developed and used for reliability verification on medium size steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valve and steam regulation valve. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Nonlinear Dynamic Response Analysis of Slender Rigid Blocks Mounted on Seismic Isolation Systems (격리받침 위에 놓이 세장한 강체 블록의 비선형 동적거동 해석)

  • 김재관;채윤병
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.93-104
    • /
    • 2000
  • 적충되어 있는 다중 블록 시스템은 역사적 건물이나 문화재등에 자주 사용되고 있다. 이러한 구조시스템은 지진에 매우 취약하고, 특히 세장한 구조물인 경우에는 낮은 수준의 지반가속도에 대해서도 전도가 일어날 수 있다. 지진으로부터 이러한 구조물을 보호할 수 있는 방법중의 하나로써 지진격기받침의 사용을 들 수 있으나, 아직 격리받침이 설치되어 있는 다중블록의 거동에 대해서는 잘 알려지지 않는 실정이다. 이 논문에서는 각각 P-F 시스템, FPS, LRB 시스템이 설치되어 있을때의 세장한 강체 블록의 동적거동에 대해 살펴보았다. P-F 시스템과 FPS에서의 마찰모델은 Coulomb의 마찰법칙을 이용하였도, 상부구조물은 붙음(stick)모드와 록킹(rocking) 모드만이 존재하도록 가정하였다. 충격은 개별요소법(distinct element method, DEM)을 이용해 기술하였고, 조화입력운동에 대한 응답을 조사하였다.

  • PDF

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

Parametric Study of Thermal Stability on Continuous Welded Rail

  • Choi, Dong-Ho;Na, Ho-Sung
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.126-133
    • /
    • 2010
  • The thermal buckling analysis of curved continuous welded rail (CWR) is studied for the lateral buckling prevention. This study includes a thermal buckling theory which accounts for both thermal and vehicle loading effects in the evaluation of track stability. The parameters include rail size, track lateral resistance, track longitudinal and torsional stiffnesses, initial misalignment amplitude and wavelength, track curvature, tie-ballast friction coefficient and truck center spacing. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical buckling temperatures. The results show that the upper critical buckling temperature is highly affected by the uplift due to vehicle loads. This study provides a guideline for the improvement of stability for dynamic buckling in curved CWR track.

  • PDF

Development of the Design Program of the Brake System for the Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 브레이크 시스템 설계 프로그램 개발)

  • 서명원;권성진;박윤기;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.108-120
    • /
    • 2001
  • In this paper, the braking performance considering the dynamic weight is analyzed about the tractor-semitrailer vehicle. The basic brake performance, the parking brake performance, the emergency brake performance and the locking point deceleration etc. are to be calculated for the brake system design of the tractor-semitrailer vehicle. This braking performance is related to traffic regulations and braking characteristics according to the vehicle deceleration, the tire-road friction coefficient and specifications of the air brake system. The design program for the braking performance based on various design variables of the vehicle and the air brake system is developed integrating the analysis functions. This design program is developed by an object oriented programming method that is windows based. GUI (Graphic User Interface) function and the convenience of operating are greatly considered.

  • PDF

Development of a New Analysis Method of Fluid Film for Efficient Estimate of the Moving Characteristics of Hydrostatic Bearings (유정압베어링 운동특성의 효과적인 예측을 위한 새로운 유막 해석방법의 개발)

  • 전상렬;김권희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.166-174
    • /
    • 2003
  • Hydrostatic bearings are widely used in precision machines due to their high motion guide accuracy, low friction and high load carrying capacity. It is very useful to estimate the moving characteristics of hydrostatic bearings in the design stage. A new method is suggested for the analysis of fluid film in hydrostatic bearings. A combined mesh of 8 node solid elements with negligible deformation resistance and spring-dashpot elements is used in conjunction with the user subroutine of ABAQUS to represent the fluid film. The mesh can be used to capture the deformation of the bearing structure as well as the varying properties of fluid film. Analysis results from the finite element model are compared with theoretical solutions, results from FLUENT analysis and some previous works. With this method, static and dynamic analyses of the system containing the bearings can be performed efficiently.

A realization of simulator for reliability verification on large steam turbine controller (대용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2138-2140
    • /
    • 2001
  • A siumlator had been developed and will be used for reliability verification on large steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

Developing Analysis Model for Evaluation of HCVT Materialization Possibility, and Examining It's Characteristics (HCVT 구현 가능성 평가를 위한 해석모델 개발 및 특성검토)

  • Noh, Daekyung;Jung, Dongsoo;Jang, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • This paper reviews design validity before manufacturing HCVT prototype through simulation. The component part is being devided, modeled and checked if it works well to an designer's original intent about some active modes. Also, the dynamic characteristic is examined how it changes according to alteration of pressure, friction and leak rate. Finally, HCVT design plan is being confirmed if it could be materialized through those analysis.