• Title/Summary/Keyword: dynamic deformation

Search Result 1,473, Processing Time 0.028 seconds

Dynamic Deformation Characteristics of Korean Hydraulic-Fills Soil Deposits (국내 준설매립토 지반의 동적변형특성)

  • 김동수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.69-76
    • /
    • 1999
  • Because of the limited land in Korea most of the projects require large-scale reclamation. The hydraulic-filled soil deposits are usually loose and susceptible to be liquified during earthquake. The dynamic deformation characteristics which expressed by shear modulus and damping ratio are important to analyze the earthquake ground motion. In this paper resonant column tests were performed on five hydraulic filled soil in Korea and the deformational characteristics at both small and medium strains were investigated. The coefficients in the Hardin equation to predict the representative maximum shear modulus and modulus reduction cure are also proposed.

  • PDF

A Study on Strain Rate Sensitivity by Unified Viscoplasticity (점소성 이론에 의한 변형률 속도 민감도에 대한 연구)

  • 호괄수
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.600-607
    • /
    • 2004
  • This paper addresses a viscoplastic constitutive model that allows a consistent way of modeling positive and negative rate sensitivities of flow stress concerned with dynamic strain aging. Based on the concept of continuum mechanics, a phenomenological constitutive model includes the use of a yield surface within the framework of unified viscoplasticity theory. To model negative rate sensitivity, rate-dependent back stress is introduced and flow stress in fully developed inelastic deformation regime is thus decomposed into the plastic contribution of rate independency and the viscous one of rate dependency.

High Temperature Plastic Deformation Condition of Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건에 관한 연구)

  • 김성일;정태성;유연철;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.76-79
    • /
    • 1998
  • High temperature plastic deformation behavior of Al 6061 alloy was characterized by hot torsion test. The Al 6061 alloy deformed continuously in the temperature range of 400∼550$^{\circ}C$, and strain rate range of 0.05∼5/sec. The softening mechanism of Al 6061 alloy was dynamic recrystallization and identified by hyperbolic sine law and zener-Hollmon parameter. The evolution of grain size and deformation resistance were calculated by the relationships of deformation variables.

  • PDF

Hot Deformation Behavior of Presintered Steel Powder Preforms (예비소결된 철계분말 preform의 고온변형거동)

  • Lee, Gang-Ryul;Seo, Sang-Gi
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.53-60
    • /
    • 1989
  • Hot upsetting experiments were carried out on presintered steel powder preforms in the temperature range 700- $950^{\circ}C$ to examine the hot deformation behavior. Following conclusions were drawn on the basis of the present study. -The flow stress during hot deformation is directly related to $\alpha$- $\gamma$ phase trasformation - The flow stress of ferrite is lower than that of austenite in the moderate temperature range 800- $900^{\circ}C$ for most alloys used in the present study - Major restoration behavior during hot deformation in the ferrite range is dynamic recovery.

  • PDF

Crashworthiness analysis on existing RC parapets rehabilitated with UHPCC

  • Qiu, Jinkai;Wu, Xiang-guo;Hu, Qiong
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2017
  • In recent year, the coat layer drops and the rebar rust of bridge parapets, which caused the structural performance degradation. In order to achieve the comprehensive rehabilitation, ultra high performance cementitious composites is proposed to existing RC parapet rehabilitation. The influence factors of UHPCC rehabilitation includes two parts, i.e., internal factors related with material, such as UHPCC layer thickness, corrosion ratio of rebars, fiber volume fraction, and external factors related with the load, such as impact speeds, impact angles, vehicle mass. The influence of the factors was analyzed in this paper based on the nonlinear finite element. The analysis results of the maximum dynamic deformation and the peak impact load of parapets revealed the influence of the internal factors and the external factors on anti-collision performance and degree degradation. This research may provide a reference for the comprehensive multifunctional rehabilitation of existing bridge parapets.

Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

  • Li, Jun;Jiang, Li;Li, Xiaobin
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The coupled equations of motion of the composite beams are derived with help of the Hamilton's principle. The effects of the shear deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present results with the available solutions in literature.

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

Determination of Dynamic Tensile Behavior of Al5052-H32 using SHPB Technique (SHPB 테크닉을 이용한 Al5052-H32의 동적 인장 거동 규명)

  • 이억섭;김면수;백준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.790-794
    • /
    • 1997
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to those mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental behavior under high strain rate loading condition In this paper, dynamic deformation behaviors of A15052-H32 under high strain rate tensile loading are determined using the SHPB technique.

  • PDF

Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm (50,000rpm급 초고속 주축계의 정적/동적/열적 특성 해석)

  • 김석일;조재완;이원재;이용희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.494-499
    • /
    • 2003
  • This paper concerns the static, dynamic and thermal characteristics analysis of a high-speed spindle system for horizontal machining centers with 45mm x50,000rpm. The spindle system is designed based on the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The structural and thermal analysis models of spindle system are constructed by the finite element method. The static and dynamic characteristics are estimated based on the static deformation, modal parameter, mode shape and frequency response function, and the thermal characteristics are estimated based on the temperature rise, temperature distribution and thermal deformation. The analysis results illustrate that the designed spindle system has excellent structural and thermal stabilities

  • PDF

Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel (동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.