• Title/Summary/Keyword: dynamic control

Search Result 7,967, Processing Time 0.031 seconds

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

Comparison Study of Nonlinear CSAS Flight Control Law Design Using Dynamic Model Inversion and Classical Gain Scheduling (항공기 CSAS 설계를 위한 고전적 Gain Scheduling 기법과 Dynamic Model Inversion 비선형 기법의 비교 연구)

  • Ha, Cheol-Geun;Im, Sang-Su;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.574-581
    • /
    • 2001
  • In this paper we design and evaluate the longitudinal nonlinear N(aub)z-CSAS(Command and Stability Augmentation System) flight control law in \"DMI(Dynamic Model Inversion)-method\" and classical \"Gain Scheduling-method\", respectively, to meet the handling quality requirements associated with push-over pull-up maneuver. It is told that the flight control law designed in \"DM-method\" is adequate to the full flight regime without gain scheduling and is efficient to produce the time response shape desired to the handling quality requirements. On the contrary, the flight control law designed in \"Gain Scheduling-method\" is easy to be implemented in flight control computer and insensitive to variation of the actuator model characteristics.n of the actuator model characteristics.

  • PDF

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

The Effects of Elastic Ankle Taping on Static and Dynamic Postural Control in Individuals With Chronic Ankle Instability

  • Lim, Jin-seok;Kim, Seo-hyun;Moon, Il-young;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.200-207
    • /
    • 2021
  • Background: Postural control deficit is a major characteristic in patients with chronic ankle instability (CAI). Elastic ankle tapings are commonly used to facilitate postural control in patients with CAI as well as prevent relapse of a lateral ankle sprain. However, equivocal evidence exists concerning the effect of elastic ankle taping on postural control. Objects: This study aimed to evaluate the effects of elastic ankle tapings using kinesio taping (KT) and dynamic taping (DT) on static and dynamic postural control in patients with CAI. Methods: Fifteen subjects with CAI were participated in this study. The participants performed tests under three conditions (barefoot, KT, and DT). Static postural control was evaluated using the one-leg standing test (OLST) and dynamic postural control using the modified Star Excursion Balance Test (mSEBT). One-way repeated-measures analysis of variance was used to compare center of pressure (CoP) data and normalized mSEBT reach distances among the three conditions (with α = 0.05). Results: The CoP parameters (path length, ellipse area, and mean velocity) of the OLST significantly decreased on applying KT and DT compared with those when barefoot. The normalized reach distances in the anteromedial (AM), medial (M), and posteromedial (PM) directions of the mSEBT significantly increased with DT compared to that in the control condition. Further, the higher reach distances with KT compared with those in the control condition were obtained in the M and PM directions of the mSEBT. No significant differences were identified in any of the OLST and SEBT parameters between the two different taping applications. Conclusion: KT and DT improved static postural control during the OLST compared with the control condition. Moreover, these tapes improved dynamic postural control during the mSEBT compared to the control. Therefore, elastic ankle tapings are useful prophylactic devices for the prevention and treatment of ankle sprain in people with CAI.

Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion (ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어)

  • Shim, Hyung-Won;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.

Dynamic Neurocontrol Architecture of Robot Manipulators (로보트 매니퓰레이터의 동력학적 신경제어 구조)

  • 문영주;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

Effective Dynamic Models for the Development of Control Algorithms of a Condensing Gas Boiler System (콘덴싱 가스보일러시스템의 제어 알고리즘 개발을 위한 효과적인 동적모델)

  • Han, Do-Young;Kim, Sung-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.34-39
    • /
    • 2007
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a condensing gas boiler unit, the effective operations and controls of the system are necessary. In this study, mathematical models of a condensing gas boiler system were developed and programmed in order to predict dynamic behaviors of the system. These include dynamic models for a blower, a gas valve, a pump, a burner, a boiler heat exchanger, and a hot water heat exchanger. Control algorithms for the control of a gas valve, a blower, and a pump were also assumed. Simulation results showed good predictions of the dynamic phenomena of a boiler system. Therefore, the simulation program developed for this study may be effectively used for the development of control algorithms of the boiler system.

  • PDF

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

  • Fang, Ming-Chung;Lee, Zi-Yi
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.199-220
    • /
    • 2015
  • The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning(DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the $4^{th}$ order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.