• Title/Summary/Keyword: dynamic control

Search Result 7,944, Processing Time 0.038 seconds

Stability Analysis using Dynamic Model of Two Industrial Robots Handling a Single Object (두개의 ROBOT이 한물체를 다룰때의 Dynamic Model을 이용한 Stability Analysis)

  • Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.809-812
    • /
    • 1991
  • Two control strategies are proposed for two arm robots; i.e. position-position control and position-force control. For the proof of these control strategies, the stability analysis is conducted with robot dynamics included. First, the closed form dynamic equation of the robot is derived, then it is transformed into the operational space for further analysis. Finally, Liapunov method is applied to the dynamic equation in operational space.

  • PDF

Dynamic Modeling and Control of Electronic Timer in Fuel Injection System of Light-Duty Diesel Engines (소형디젤엔진용 연료분사장치 전자타이머의 동적모델링과 제어)

  • 한도영;김증열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.196-204
    • /
    • 1996
  • The simplified dynamic models of the timer assembly in the diesel engine fuel injection system were developed. The first order system with time delay was assumed and the various parameters in this model were obtained by experimental data. These simplified dynamic models were used for the development of control algorithm of the injection timing control system. The PI control algorithm was modified to include the anti-windup property and disturbance compensation. This modified PI control algorithm was used for the control of the injection timing. Improved control accuracy and reduced control efforts were observed.

  • PDF

Dynamic Surface Control Based Tracking Control for a Drone Equipped with a Manipulator (동적 표면 제어 기반의 매니퓰레이터 장착 드론의 추종 제어)

  • Lee, Keun-Uk;Choi, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1123-1130
    • /
    • 2017
  • This paper deals with the dynamic surface control based tracking control for a drone equipped with a 2-DOF manipulator. First, the dynamics of drone and 2-DOF manipulator are derived separately. And we obtain the combined model of a drone equipped with a manipulator considering the inertia and the reactive torque generated by a manipulator. Second, a dynamic surface control based attitude and altitude control method is presented. Also, multiple sliding mode control based position control method is presented. The system stability and convergence of tracking errors are proven using Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique (유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어)

  • Jung, Hoon-Hyung;Jo, Hyeon-Min;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

Control Method for State Constrained Control Systems: Dynamic Anti-Widup Based Approach (동적 와인드엎 방지법에 기초한 상태 제한이 존재하는 시스템의 제어 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.672-681
    • /
    • 2000
  • Based on the dynamic anti-windup strategy a novel control methodology for state constrained control systems is presented. First a linear controller is designed for an open-loop stable plant to show a desirable nominal performance by ignoring state constraints. And then an additional dynamic compensator is introduced to preserve the nominal performance as closely as possible int he face of state constraints. This paper focuses on the second step under the assumption that a linear controller has already been designed appropriately by using an effective controller design method. By minimizing a reasonable performance index the dynamic compensator is derived explicitly which is expressed int he plant and controller parameters. the proposed method not only guarantees the total stability of the overall resulting systems but also provides desirable output performance because it solves the state-positioning problem completely.

  • PDF

Dynamic Systems Control Using Entrainment-enhanced Neural Oscillator

  • Yang, Woo-Sung;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1020-1024
    • /
    • 2005
  • In this paper, an approach to dynamic systems control is addressed based on exploiting the potential features of the new nonlinear neural oscillator. Neural oscillators have recently enabled robots to exhibit natural dynamics using their robustness and entrainment properties. To technically accomplish this objective, the neural oscillator should be connected to the robot joints under the sensory feedback. This also requires the neural oscillator to adapt to the non-periodic nature of arbitrary input patterns. However, even in the most widely-used Matsuoka oscillator, when an unknown quasi-periodic or non-periodic signal is applied, its output signal is not always closely entrained. Therefore, current neural oscillators may not be applied to the precise control of the dynamic systems response. We illustrate the enhanced entrainment properties of the new neural oscillator by numerical simulation and show the possibility for implementation to control a variety of dynamic systems. It is verified that the oscillator can produce rhythmic signals for generating actuator signals which can be naturally modified by incorporating sensory feedback to adapt to outer circumstances.

  • PDF

Precise Control of Dynamic Friction Using SMC and Nonlinear Observer (SMC와 비선형관측기를 이용한 동적마찰에 대한 정밀추종제어)

  • Han, Seong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.692-697
    • /
    • 2001
  • A precise tracking control scheme on the system in presence of nonlinear dynamic friction is proposed. In this control scheme, the standard SMC is combined with the nonlinear observer to estimate the dynamic friction state that is impossible to measure. Then this control scheme has the good tracking performance and the robustness to parameter variation compared with the standard SMC and the PiD based nonlinear observer control system. This fact is proved by the experiment on the ball-screw driven servo system with the dynamic friction model.

  • PDF

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF