• Title/Summary/Keyword: dynamic control

Search Result 7,967, Processing Time 0.046 seconds

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

Instantaneous Following PWM Control Strategy of Cuk Converter Using Integrator (적분기를 이용한 Cuk 컨버터의 순시추종형 PWM 제어)

  • Shon, Je-Bong;Jeong, Soon-Yang;Kim, Kwang-Tae;Lee, Woo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.103-105
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of Cuk converter. In this control method, the duty ratio of a switch is exactly equal to or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with Cuk converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM.

  • PDF

Stochastic System Reduction and Control via Component Cost Analysis (구성요소치 해석을 이용한 확률계의 축소와 제어)

  • Chae, Kyo-Soon;Lee, Dong-Hee;Park, Sung-Man;Yeo, Un-Kyung;Cho, Yun-Hyun;Heo, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.921-926
    • /
    • 2007
  • A dynamic system under random disturbance is considered in the study. In order to control the system efficiently, proper reduction of system dimension is indispensible in design stage. The reduction method using component cost analysis in conjunction with stochastic analysis is proposed for the control of a system. System response is obtained in terms of dynamic moment equation via Fokker-Plank-Kolmogorov(F-P-K) equation. The dynamic moment response of the system under random disturbance are reduced by using of deterministic version of component cost analysis. The reduced system via proposed "stochastic component cost analysis" is successfully implemented for dynamic response and shows remarkable control performance effectively utilizing "stochastic controller" in physical time domain.

  • PDF

Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction (비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.

Dynamic Stall Control Using Aerodynamic Sensitivity Analysis (민감도 해석을 이용한 동적실속 제어)

  • Ahn, Tai-Sul;Kim, Hyoung-Jin;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.10-20
    • /
    • 2002
  • The present paper investigates methods to control dynamic stall using an optimal approach. An unsteady aerodynamic sensitivity analysis code is developed by a direct differentiation method from a two-dimensional unsteady compressible Navier-Stokes solver including a two-equation turbulence model. Dynamic stall control is conducted by minimizing an objective function defined at an instant instead of integrating for a period of time. Unsteady sensitivity derivatives of the objective function are calculated by the sensitivity code, and optimization is carried out using a linear line search method at every physical time step. Numerous examples of dynamic stall control using control parameters such as nose radius, maximum thickness of airfoil, or suction show satisfactory results.

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

The Development of Jumping Ring with Sensor System and Design of Dynamic Neural Controller (점핑링 및 센서 시스템 개발과 동적 신경망 제어기 설계)

  • Park, Seong-Wook;Kwon, Ki-Jin;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.540-542
    • /
    • 1999
  • We develop jumping ring system with sensor and control system using dynamic neural networks. Jumping ring, sensor and control system are controlled by 586 PC using Turbo C program. Sensor system is composed of 20 optical sensors and encoder. The control circuits are consisted of thyristor, FET and phase controller. A/D converter and optical sensor acquire real time motion data of the jumping ring system. The information of acquired jumping ring Position is estimated by using dynamic neural networks. Estimated control signals are sent to control circuits and D/A converter to track desired position of the jumping ring system. Experiment results are given to verify that proposed dynamic controller is useful in real jumping ring system.

  • PDF

Real Time Control for Robot Manipulator Using Transputer (트랜스퓨터를 이용한 로보트 매니퓰레이터의 실시간 제어)

  • Jang, Yong-Geun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.397-400
    • /
    • 1992
  • Many dynamic control have been proposed; however, most of them are limited within stage of simulation study. The main reason is that the computations required for inverse dynamics are far beyond the ability of the present commercially available microprocessors. In this paper, In order to achieve real-time processing in robot dynamic control, a parallel processing computer for robot dynamic control is implemented using two transputer. Two transputer compute two degree of freedom robot. The transputer is a special purpose MPU for parallel processing. Transputers are used in networks to build a high performance concurrent system. A network of transputers and peripheral controllers is constructed using point-to-point communication. To gain most benifit from the transputer architecture, the whole system is programmed in OCCAM which is a high level language for concurrent applications. This control algorithm is applied to the RHINO SCARA type manipulator. We could taked about 438.6 microseconds to compute robot dynamic with two-processors.

  • PDF

Design of an Adaptive Variable Structure Control using Fredholm Integral Formulae for the Uncertainties (불확실성의 Fredholm 적분 수식화를 통한 적응가변구조제어기 설계)

  • 유동상
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.658-663
    • /
    • 2003
  • In deterministic design of feedback controllers for uncertain dynamic systems, the upper bound of the uncertainty is very important to guarantee the stability of the closed loop system. In this paper, we assume that the upper bound of the uncertainty is formulated using a Fredholm integral equation of the first kind, that is, an integral of the product of a predefined kernel with an unknown influence function. We propose an adaptation law that is capable of estimating this upper bound. Using this adaptive upper bound, we design an adaptive variable structure control (AVSC), which guarantees asymptotic stability/ultimate boundedness of uncertain dynamic systems. The illustrative example shows the proposed AVSC is effective for uncertain dynamic systems.

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.