• 제목/요약/키워드: dynamic characteristics of concrete

Search Result 355, Processing Time 0.027 seconds

Dynamic stiffness analysis of steel-concrete composite beams

  • Li, Jun;Huo, Qiji;Li, Xiaobin;Kong, Xiangshao;Wu, Weiguo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.577-593
    • /
    • 2014
  • An exact dynamic stiffness method is introduced for investigating the free vibration characteristics of the steel-concrete composite beams consisting of a reinforced concrete slab and a steel beam which are connected by using the stud connectors. The elementary beam theory is used to define the dynamic behaviors of the two beams and the relative transverse deformation of the connectors is included in the formulation. The dynamic stiffness matrix is formulated from the exact analytical solutions of the governing differential equations of the composite beams in undamped free vibration. The application of the derived dynamic stiffness matrix is illustrated to predict the natural frequencies and mode shapes of the steel-concrete composite beams with seven boundary conditions. The present results are compared to the available solutions in the literature whenever possible.

Experimental Study on Dynamic Characteristics of Vibration-Controlled Concrete Beam (제진 콘크리트 보의 동적특성에 관한 실험적 연구)

  • 정영수;최우성;이대형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.185-193
    • /
    • 1997
  • 본 연구는 각종 제진재료를 이용하여 진동을 억제할 수 있는 콘크리트를 개발하여 각종 건설공사에서 흔히 발생할 수 있는 진동공해문제를 억제하고자 하며 아울러 폐기물의 재활용차원에서 폐자재를 이용하여 유용한 제진콘크리트를 개발하고자 하는데 그 목적이 있다. 우선, 제진재료를 이용한 압축강도 (200kg/$\textrm{cm}^2$)이상의 콘크리트 배합비를 찾기 위하여 24배치의 예비실험을 수행하였으며, 선정된 적정배합비에 따른 제진재료를 이용한9개의 진동시험체보를 제작하여 보의 구조적 및 재료적 동적특성 즉 1차 공명진동수와 동적 휨강성 및 감쇠비를 측정하여 제진효과를 조사하였다. 그리고 압축강도에 의한 각 시험체의 균열모멘트를 추정하여 재하하중과 균열모멘트비(M/Mcr)에 따른 하중단계별 동적특성값을 살펴보았다. 제진재료로서는 라텍스(Latex), 고무분말(Rubber Powder)그리고 플라스틱 레진( Plastic Resin)등을 사용하였고, 재료적, 구조적 진동감쇠효과를 파악하고자 KS F2437규정과 진동파의 속도법을 사용하였으며, 감쇠비 측정은 Frequency Spectrum 곡선에 대한 Polynomial Curvefitting 방법과 기하학적 해석방법을 이용하여 각각의 결과를 비교.분석하였다.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

Characteristics of Lightweight Concrete and Their Application in Structures

  • ;R.N. Swamy
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

Relative Dynamic Modulus of Elasticity Comparison of the Eco-friendly Lightweight Concreate According to the Experimental Method (시험방법에 따른 친환경 경량콘크리트의 상대동탄성 계수 비교)

  • Lee, Soo-Hyung;Lee, Han-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.181-182
    • /
    • 2016
  • We developed eco-friendly lightweight concrete in order to apply eco-friendly lightweight concrete into structural wall or slab of shallow depth urban railway system. However, since lightweight aggregate has different structural feature of porous and it has been overvalued at current KS standard when applied, we did compare the characteristics of freezing and thawing of normal weight aggregate concrete by comparative test method(KS, ASTM). According to test method, there was a big difference of dynamic elastic modulus in lightweight concrete rather than in normal weight aggregate concrete. The big absorption factor in lightweight aggregate is main reason for that. For more detail, in KS law in which only 14 days water curing is carried out, the big amount of moisture in lightweight aggregate is frozen and high heaving pressure occurs and finally that lead to destruction of lightweight concrete. Therefore, it is considered that in case of lightweight concrete, resistibility against freezing and thawing has been undervalued in domestic KS law compared to ASTM law, which is overseas standard. So, a variety of examination about testing criteria and rule would be necessary for exact assessment of lightweight concrete.

  • PDF

An Experimental Study on Vibration Control of Concrete Slab (콘크리트슬래브의 진동제어에 관한 실험적 연구)

  • Byun, Keun Joo;Lho, Byeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.473-485
    • /
    • 1994
  • Vibration control of concrete slab mounting precision instrument is needed to make the working vibration environments in frequency domain as well as time domain. In order to take the vibration control countermeasures, signal and system analyses of the concrete slab are processed. Through them the dynamic responses of concrete slab are obtained in frequency domain, and frequency response functions are acquired by exciting the concrete slab and measuring dynamic responses at various points across its surface. The dynamic characteristics of concrete slab are determined by experimental modal analysis. Based on modal parameters from a set of frequency response function measured, it is possible to investigate the effects of potential design modifications and reduce the dynamic response of concerned point by moving or suppressing an objectionable modal resonance conditions through structural dynamics modification.

  • PDF

Dynamic Behavior of Bi Prestressed Concrete Girders (프리스트레스트 콘크리트거더의 동적응답 분석)

  • Lee, Pil-Goo;Kim, Choong-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.353-356
    • /
    • 2008
  • This study was performed to estimate the dynamic behavior for Bi Prestressed Concrete Girder(Bicon girder) which could introduce effectively prestressed forces into concrete girders. Dynamic behavior of PSC girder must be verified because it becomes not only slim but also long and a railway bridge which loaded regularly has risk of resonance especially. Forced vibration test using a vibration machine was executed for 20m railway bridge girder specimen to acquire dynamic characteristics(natural frequency, damping ratio) and test results showed the natural frequency of 6.632Hz and the damping ratio of 1.43%

  • PDF

The Dynamic Characteristics for Low-rise Reinforced Concrete Buildings by Vibration Measurements (진동계측에 의한 저층 철근콘크리트조 건물의 동적특성)

  • Kang, Dong-Gyun;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.47-55
    • /
    • 2003
  • This paper is concerned with the dynamic characteristics of buildings, especially with the measurement of the natural frequencies(natural periods) and the damping. Process of ambient vibration and synchronized human excitation tests for natural period and damping are given. Data from measurement on 16 reinforced concrete buildings in Seoul and Seoul national university of technology are given. 16 Low-rise Reinforced concrete buildings are measured for ambient vibration to obtain the vibrations characteristics. The natural periods obtained by ambient vibration measurements are compared with those of forecast model suggested by standards and foreign researchers. The natural periods show a clear dependence on building height. On the other hand, the damping ration scatter under the influence of various factors, for example, building height and natural frequency.

  • PDF