• Title/Summary/Keyword: dynamic characteristics of concrete

Search Result 355, Processing Time 0.026 seconds

Modal identification and model updating of a reinforced concrete bridge

  • El-Borgi, S.;Choura, S.;Ventura, C.;Baccouch, M.;Cherif, F.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2005
  • This paper summarizes the application of a rational methodology for the structural assessment of older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the bridge, identification of the structure's modal signature and finite element model updating. The selected case study is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient vibration tests were conducted on the bridge using a data acquisition system with nine force-balance accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model updating part of the study, the parameters selected for the updating process include the concrete modulus of elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model updating to provide data that could be used to assess the structural condition of the selected bridge. The application of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

Developments of monitoring system to measure sound absorbing coefficient and structural stability of sound absorbing panel on the concrete track in the urban train tunnel (도시철도 터널 내부 콘크리트 도상 국소공명흡음판의 흡음계수 및 구조안정성 평가를 위한 계측시스템 개발)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this study, a test-bed system simulated a tunnel and concrete track is tested on cite and invested an allowed limit of multi-layered sound absorbing panel for reducing noise reflected on the concrete track in train tunnel considering the criteria and limitation on the theoretical back ground. The studied results are an effective evaluating system of the sound absorbing coefficient influenced fluid effects depending on the vehicle speed in the urban train tunnel and measuring not only structural behaviors of maximum displacement and acceleration of the panel but also dynamic characteristics of damping ratio and natural frequency.

Seismic vulnerability assessment of composite reinforced concrete-masonry building

  • Remki, Mustapha;kehila, Fouad;Bechtoula, Hakim;Bourzam, Abdelkrim
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.371-386
    • /
    • 2016
  • During the last decades, many destructive earthquakes occurred in Algeria, particularly in the northern part of the country (Chlef (1980), Constantine (1985), Tipaza (1989), Mascara (1994), Ain-Benian (1996), Ain Temouchent (1999), Beni Ourtilane (2000), and recently $Boumerd{\acute{e}}s$ (2003), causing enormous losses in human lives, buildings and equipments. In order to reduce this risk and avoid serious damages to the strategic existing buildings, the authorities of the country, aware of this risk and in order to have the necessary elements that let them to know and estimate the potential losses in advance, with an acceptable error, and to take the necessary countermeasures, decided to invest into seismic upgrade, strengthening and retrofitting of those buildings. To do so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed based on the site investigation (inspection of the building, collecting data, materials characteristics, general conditions of the building, etc.), and existing drawings (architectural plans, structural design, etc.). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper presents the methodology, based on non linear and seismic analysis of existing buildings, followed in this study and summarizes the vulnerability assessment and strengthening of one of the strategic buildings according to the new Algerian code RPA 99/version 2003. As a direct application of this methodology, both, static equivalent method and non linear dynamic analysis, of composite concrete masonry existing building in the city of "CONSTANTINE", located in the east side of ALGERIA, are presented in this paper.

Development of Eco-friendly Pavement Material using Polyurethane Binder (폴리우레탄 바인더를 활용한 친환경 도로포장용 혼합물 개발)

  • Choi, Ji Young;An, Young Jun;Park, Hee Mun;Kim, Tae Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • PURPOSES : The objectives of this study are to develop the eco-friendly pavement material using polyurethane binder and evaluate mechanical properties of the developed binder and concrete. METHODS : The bending beam test was conducted to select the sample candidates of polyurethane binder based on the bending strength. The characteristics of viscosity, curing time, and temperature change of sample binder was examined on different temperature conditions. The mechanical properties of polyurethane binder was estimated using the dynamic modulus testing. The indirect tensile strength test was conducted on polyurethane binder concrete with different gradation and binder content for evaluating the mechanical properties of concretes. RESULTS : Based on the beading beam test, four different binder samples were prepared for estimate the mechanical properties. The viscosity of polyurethane binder tends to increase with increase of liquid temperature and the hardening phenomenon begins 10 to 15 minutes at room temperature after mixing the resin and hardener. It is observed that the dynamic modulus of binder increases as loading frequency increases and change of modulus is found to be the highest in the PU-2I binder type. The PU-2I binder concretes shows the largest value of indirect tensile strength and indirect tensile energy. CONCLUSIONS : The use of polyurethane binder as pavement materials is capable of increasing the pavement performance and reducing the detrimental environmental effect during the highway construction.

Unconfined Compressive Strength Characteristics and Time Dependent Behavior of Soil-Cement (소일시멘트의 일축압축강도 특성 및 시간의존 거동)

  • Kim, Jong-Ryeol;Kang, Hee-Bog;Kang, Hwa-Young;Kim, Do-Hyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.87-96
    • /
    • 2004
  • As a special concrete, which is a mixture of soil, cement and water, has strength like regular concrete for pavement, soil cement has been used in various field such as pavement and soft soil improvement. The objective of this study was to investigate the characteristic of unconfined compressive strength and time dependent behavior of soil cement that is made from decomposed granite soil or coluvial and inorganic solidification liquid. The results showed that the unconfined compressive strength appears to increase as the amount of cement and curing time increase In addition, the strength seems to decrease with increase of the potion of fine particles(No 200 sieve). The result of XRD indicated that there is Vermiculite, the product of reaction, in the soil cement. The dynamic properties of material, such as shear complex compliance, shear complex modulus, and phase angle could be calculated from the hysteresis loop obtained from the Haversine Creep Tests. Finally, creep behavior was able to be predicted from these dynamic properties.

Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge (CFT 트러스 거더 합성형교의 구조거동 평가)

  • Chung, Chul-Hun;Kim, Hye-Ji;Song, Na-Young;Ma, Hyang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.149-159
    • /
    • 2010
  • This paper presents an experimental study on the structural behavior of composite CFT truss girder bridge with full depth precast panels. The length of span is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled and hollow circular tubes. To determine fundamental structural characteristics such as the strength and deformation properties of composite CFT truss girder bridge, static and dynamic tests were conducted. The natural frequencies calculated by the FEM are in good agreement with experimental results obtained from dynamic test. Bracing have only a small effect on the natural frequencies of composite CFT truss girder bridge as indicated by the FEM results. The yield strength and deformation of the composite CFT truss girder bridges were investigated through a static bending test. Besides, the test results showed that uniform distribution of shear connectors can be applicable in composite CFT truss girder bridges.

Dynamic behavior of Track/Roadbed with Loading Frequency in Concrete Track through Full Scale Model Test (실대형 실험을 이용한 가진주파수 변화에 따른 콘크리트궤도의 동적평가)

  • Choi, Chanyong;Kim, Hunki;Eum, Kiyoung;Kang, Yunsuk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, the full scale model tests were performed with track-roadbed system such as Ho-nam high speed railway. The measured data gives good similar a roadbed pressure with equivalent depth to the Odemark's theory. In the case of earth pressures have a under 50 kPa at upper-subgrade applying 330 kN static loading. Results of cyclic loading tests did not differ significantly from those of static loading test. The elastic displacement at HSB layer has a level of 1/100 compared to the 1 mm that it was evaluation criteria for speed up of High Speed Railway. Elastic displacement at subgrade layer was measured a level of 1/175. The dynamic characteristics of track-roadbed with loading frequency level were linearly increased under 35 Hz, while the wheel loading, displacement and acceleration of roadbed were decreased loading frequency above 35 Hz.

Analysis of Surface Temperature Change and Heat Dissipation Performance of Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 도로 포장체의 표면 온도 변화와 방열 성능 분석)

  • Byonghu Sohn;Muhammad Usman;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.8-19
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have well studied and documented by many researchers. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their heating and cooling performance. The aim of this study is to investigate the thermal performance of the HHP, such as heat dissipation performance in winter season while focusing on the surface temperature of the concrete and asphalt pavement. For preliminary study a small-scale experimental system was designed and installed to evaluate the heat transfer characteristics of the HHP in the test field. The system consists of concrete and asphalt slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In two slabs, circulating water piping was embedded at a depth of 0.12 m at intervals of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. The results indicated that concrete's heating performance is better than that of asphalt, showing higher surface temperatures for the whole experiment cases. However, the surface temperature of both concrete and asphalt pavement slabs remained above 0℃ for all experimental conditions. The heat dissipation performance of concrete and asphalt pavements was analyzed, and the heat dissipation of concrete pavement was greater than that of asphalt. In addition, the higher the set temperature of the circulating water, the higher the heat dissipation. On the other hand, the concrete pavement clearly showed a decrease in heat dissipation as the circulating water set temperature decreased, but the decrease was relatively small for the asphalt pavement. Based on this experiment, it is considered that a circulating water temperature of 20℃ or less is sufficient to prevent road ice. However, this needs to be verified by further experiments or computational fluid dynamic (CFD) analysis.

A Study on Transferred Load Reduction on Paved Track Roadbed with Low Elastic Base Plate Pad (저탄성 베이스플레이트 패드 적용에 따른 포장궤도 노반에서의 전달하중 저감에 관한 연구)

  • Lee, Il-Wha;Kang, Yun-Suk;Lee, Hee-Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.399-405
    • /
    • 2008
  • Development of the paved track is required as a low-maintenance of conventional line. The paved tracks are one of the types of the ballast reinforced tracks those are manufactured by adopting the prepacked concrete technique. The main elements of this tracks are large sleeper, low elastic pad, fastener, cement mortar, geotextile and recycled ballast. Low elastic pad is the most effective element of such tracks on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. The stiffness of the pad determine the stiffness of the track. Consequently, it is more important in case of concrete track structure such as paved track because application of low elastic pad seriously effect the durability and stability of the track. The main objective of this study is to confirm the reduction of train load, which transfer to roadbed through various pad effects. To achieve this task static, numerical analysis and real scale repeated loading test was performed while load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio characteristics of the paved track.