• Title/Summary/Keyword: dynamic and isothermal cure behavior

Search Result 14, Processing Time 0.018 seconds

High Temperature Cure Behavior of Unsaturated Polyester Resin (불포화 폴리에스터 수치의 고온경화특성 연구)

  • 김형근;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.38-41
    • /
    • 2000
  • High temperature cure characteristics of polyester resin systems were investigated by isothermal and dynamic differential scanning calorimetries. During isothermal scanning, the experimental procedure was modified to reduce the initial Boss of heat. no kinetic equation from the isothermal experiment was compared with that from the dynamic experiment.

  • PDF

Cure Behavior of a DGEBF Epoxy using Asymmetric Cycloaliphatic Amine Curing Agent (비대칭 고리형 지방족 아민 경화제를 이용한 DGEBF 계열 에폭시의 경화 거동)

  • Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.200-204
    • /
    • 2008
  • The curing kinetics of diglycidyl ether of bisphenol F (DGEBF) with an asymmetric cycloaliphatic amine curing agent were examined by thermal analysis in both isothermal and dynamic curing conditions. From the residual curing of the samples partially cured in isothermal condition and from the dynamic curing with various heating rates, it was found that there exist two kinds of reactions such as at low temperature and at high temperature regions. It was thus also found that the cure parameters obtained from the isothermal curing kinetic model hardly estimate experimental results for a degree of cure larger than 0.6. The activation energies and frequency factors of these two kinds of reactions were obtained from the dynamic curing experiments with various heating rates. From the curing analysis, it was verified that the total cure kinetics for low degrees of cure is dominated by the cure reaction in the low temperature region.

The Effect of Cure History on the Fluorescence Behavior of an Unsaturated Polyester Resin with A Fluorescence Probe

  • Donghwan Cho;Yun, Suk-Hyang;Bang, Dae-Suk;Park, Il-Hyun
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2004
  • We have extensively characterized the fluorescence behavior of unsaturated polyester (UP) resin in the absence and presence of a 1,3-bis-(l-pyrenyl)propane (BPP) fluorescent probe at various dynamic and isothermal cure histories by means of a steady-state fluorescence technique using a front-face illumination equipment. In addition, we explored the effect of the fluorescence intensity on the relaxation of the fluorescent probe in the UP resin by resting the dynamically and isothermally cured resin at ambient temperature and pressure for 24 h. The monomer fluorescence intensity, which has two characteristic peaks at 376 and 396nm, changed noticeably depending on the cure temperature and time and provided important information with respect to the molecular and photophysical responses upon curing. The result of the fluorescence study indicates that the increased local viscosity and restricted molecular mobility of the UP resin surrounding the BPP probe after curing are both responsible for the enhancement of the monomer fluorescence intensity. Our results also demonstrate that once the BPP probe has enough time to rearrange and become isolated prior to fluorescence, a sufficient amount of fluorescence is emitted. Therefore, we note that the fluorescence behavior of this UP resin system is influenced strongly by the relaxation process of the fluorescent probe in the resin as well as process used to cure the resin.

Cure Shrinkage Behavior of Polymer Matrix Composite according to Degree of Cure (경화도에 따른 고분자 기지 복합재의 경화 수축률 거동)

  • Kwon, Hyuk;Hwang, Seong-Soon;Choi, Won-Jong;Lee, Jae-Hwan;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Cure shrinkage during cure process of polymer matrix composites develope residual stress that cause some structural deformation, such as spring-in, spring-out and warpage. The carbon/epoxy prepreg used in this study is Hexply M21EV/34%/UD268NFS/IMA-12K supplied by Hexcel corp. Cure shrinkage and degree of cure measured by TMA(thermomechanical analyzer) and DSC(differential scanning calorimetry). Cure shrinkages are measured by TMA within a temperature range of $140{\sim}240^{\circ}C$ in a nitrogen atmosphere, and degree of cure determined by the heat of reaction using dynamic and isothermal DSC runs in argon atmosphere. As a result, the cure shrinkage is increased dramatically in a degree of cure range between 27~80%. the higher the cure temperature, the lower the degree of cure occurring to begin cure shrinkage.

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins (불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-${\alpha}$,${\alpha}$,${\alpha}$-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, $\^$13/C NMR, and $\^$19/F NMR spectroscopy. The cure activation energy of FER/DDM system was 55.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin (저온 경화형 에폭시 매트릭스 수지의 경화거동 및 화학유변학에 대한 연구)

  • Na, Hyo Yeol;Yeom, Hyo Yeol;Yoon, Byung Chul;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • Low temperature cure prepregs are being developed for use in the preparation of large-structured fiber-reinforced polymer (FRP) composites with good performance. Cure behavior and chemorheology of low temperature cure epoxy resin system, based on epoxy resin, curing agent, and accelerators, were investigated to provide a matrix resin suitable for the prepreg preparation. Characteristics of cure reaction were studied in both dynamic and isothermal conditions by means of differential scanning calorimetry and rheometry. The low temperature cure epoxy resin system suggested in this study as a matrix resin was curable at $80^{\circ}C$ for 3 h, and showed the gel times of 120 and 20 min at 80 and $90^{\circ}C$, respectively. Thermal and mechanical properties of the cured sample were almost the same as high temperature cure counterparts.

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

The Change of Degree of Cure and Specific Heat Capacity According to Temperature of Thermoset Resin (열경화성 수지의 온도에 따른 경화도와 비열(Cp) 변화)

  • Shin, Dong-Woo;Hwang, Seong-Soon;Lee, Ho-Sung;Kim, Jin-Won;Choi, Won-Jong
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2015
  • This paper presents the cure kinetics studies on the cure reaction of thermosetting resin. Above all, change in degree of cure and specific heat capacity according to temperature are observed using DSC and MDSC. The results are analyzed by cure kinetics and specific heat capacity model. Glass transition temperature was also measured to apply to the specific heat capacity model. Model parameters were gained from the modeling result. As a result, behavior of specific heat capacity can be calculated mathematically.

Study on Cure Behavior of Low Temperature and Fast Cure Epoxy with Mercaptan Hardener (Mercaptan 경화제에 의한 저온속경화 에폭시의 경화거동에 관한 연구)

  • Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.240-248
    • /
    • 2013
  • The curing behaviors of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardener were studied by the comparison with amine-adduct type hardener. Curing behaviors were evaluated by DSC at dynamic and isothermal conditions. In the DSC, the dynamic experiments were based on the method of Kissinger's equation, and the isothermal experiments were fitted to the Kamal's kinetic model. Activation energy of epoxy/amine-adduct type hardener was ca. 40 kcal/mol. As the functional group of mercaptan hardener, -SH increased, on epoxy/mercaptan hardeners, the activation energies decreased from 28 to 19 kcal/mol. Epoxy/amine-adduct type hardener was initiated at $90^{\circ}C$ or higher. However, epoxy/mercaptan hardeners reduced the initiation temperatures below $80^{\circ}C$ and shortened the durations of curing reaction within 10 min. We found out that the reaction kinetics of epoxy with mercaptan hardener followed the autocatalytic reaction models, and the maximum reaction rates were shown at the conversions of 20~40%.