• Title/Summary/Keyword: dynamic analysis method

Search Result 5,934, Processing Time 0.03 seconds

Analysis and Evaluation for Constraint Enforcement System (제한 시스템의 분석 및 평가)

  • Hong, Min;Park, Doo-Soon;Choi, Yoo-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • Stable and effective constraint enforcement system is one of the crucial components for physically-based dynamic simulations. This paper presents analysis and evaluation for traditional constraint enforcement systems(Lagrange Multiplier method, Baumgarte stabilization method, Post-stabilization method, Implicit constraint enforcement method, Fast projection method) to provide a guideline to users who need to integrate a suitable constraint enforcement system into their dynamic simulations. The mathematical formulations for traditional constraint enforcement systems are presented in this paper. This paper describes a summary of evaluation which consists of constraint error comparison, computational cost, and dynamic behavior analysis to verify the efficiency of each traditional constraint enforcement system.

Dynamic Responses of a Whole Bridge System under Earthquakes including the Effect of Foundation nearby Soil-layers (기초부 주변토체의 영향을 포함한 지진하중을 받는 교량의 통합된 동적거동분석)

  • Mha, Ho-Seong;Park, lnn-Joon;Park, Byung Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • In this study, a new procedure (Unified Dynamic Analysis Method) to evaluate the dynamic responses a bridge under earthquakes is proposed, which is not only considering the bridge motions but also the soil layer motions nearby the bridge footing in order to include the soil-structure interactions. lt is found that the dynamic responses of the whole bridge systems can be properly evaluate from using the proposed UDAM. The properties of the soil layers where the bridge is located can be included into the seismic analysis, and the multi-seismic excitations can also be considered easily.

  • PDF

Development of the Educational Simulator for Aircraft Dynamic Characteristic Analysis with the State-Space Method (상태.공간 방식에 의한 항공기 동특성 해석 교육 시뮬레이터 개발)

  • Yoon, Sun-Ju
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • The analysis of an aircraft flight dynamics is recently very convenient because of the introduction of state-space method and a well-developed package software. The representation of a dynamic system is described as a simple form of matrix calculation and the unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system with state-space method. And this analysis can be simplified with the specific functions of a package software and it is very simplified to execute the simulation of the dynamic characteristics for an aircraft model with an interactive graphical treatment. The purpose of this study is to develope an educational flight simulator for the students who need to analyze the dynamic characteristics of an aircraft that is primarily to execute the simulation for the analysis of the transient response and frequency response of an aircraft stability. Furthermore the dynamic characteristics of an aircraft motion is set up as dynamical animation tool for the control response on 3-axis motions of an aircraft.

  • PDF

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System (트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구)

  • Kang, Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

Dynamic Deformation Analysis of Cylinder Bore considering Forced Vibration (강제 진동을 고려한 실린더 보어의 동적 변형 해석)

  • 윤성호;조덕형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.174-181
    • /
    • 2002
  • Dynamic deformation of the cylinder bore during actual engine operation has an important effect on the combustion gas sealing, oil consumption, friction and so on. The dynamic analysis using the finite element method is performed to investigate the dynamic deformation of the cylinder bore subjected to forced vibration under excitation of the combustion gas pressure. However, this analysis requires large computer memory and tremendous solving time. The pseudo-static analysis can be an alternative to the dynamic analysis at the expense of accuracy. Dynamic analysis and static analysis results are presented for both closed-deck block and open-deck block that are respectively combined with the cylinder block, cylinder head, transmission, and oil pan.

Method for soil-structure dynamic interaction analysis(I) (지반-구조물의 동적 상호작용 해석법(I))

  • 황성춘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.144-151
    • /
    • 2001
  • The development history of seismic design and analysis methods considering seismic force in soil-structure dynamic interaction are presented. Determination of seismic intensity in static analysis of both seismic and modifided seismic methods is discussed and preferable method in future seismic design is proposed.

  • PDF

Dynamic Analysis of the Power Transmission System in an Industrial Robot (산업용 로봇 손목의 동력 전달계에 대한 동특성 해석)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.913-919
    • /
    • 2008
  • Dynamic characteristics of a wrist power transmission of an industrial robot are studied. The wrist power transmission has complex structure characteristics, because it is composed with several shafts and gear system. We used an analytical method to investigate the dynamic characteristics. An analytical model is a rigid model which is composed with masses and springs. Both bearing and gear contact model represent equivalent stiffness springs which are determined by the experiment. In order to investigate the dynamic tendency of the robot wrist power transmission, we simulate the analytical model. There is a dynamic analysis tool which is called the RecurDyn. To verify the analytic results, we experiment a signal analysis which is an overall noise level of the robot. By the parametric study of the element of the robot, we study an improvement method of dynamic characteristics.

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Cho, Eun-Hyoung;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.994-999
    • /
    • 2002
  • The Pendulum Automatic Dynamic Balancer is a device to reduce the unbalanced mass of rotors. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system including the Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. And the perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. Furthermore, in order to confirm the stability, the time responses for the system are computed from the nonlinear equations of motion.

  • PDF

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF