• Title/Summary/Keyword: dynamic analyses

Search Result 1,722, Processing Time 0.029 seconds

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method

  • Pagani, Alfonso;Petrolo, Marco;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.291-310
    • /
    • 2014
  • An advanced model for the linear flutter analysis is introduced in this paper. Higher-order beam structural models are developed by using the Carrera Unified Formulation, which allows for the straightforward implementation of arbitrarily rich displacement fields without the need of a-priori kinematic assumptions. The strong form of the principle of virtual displacements is used to obtain the equations of motion and the natural boundary conditions for beams in free vibration. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out free vibration analyses. According to the doublet lattice method, the natural mode shapes are subsequently used as generalized motions for the generation of the unsteady aerodynamic generalized forces. Finally, the g-method is used to conduct flutter analyses of both isotropic and laminated composite lifting surfaces. The obtained results perfectly match those from 1D and 2D finite elements and those from experimental analyses. It can be stated that refined beam models are compulsory to deal with the flutter analysis of wing models whereas classical and lower-order models (up to the second-order) are not able to detect those flutter conditions that are characterized by bending-torsion couplings.

Analysis of the Overvoltages during Energizing Transmission Lines using EMTP (EMTP를 이용한 시송전 계통의 송전선로 초기 가압시 과전압 분석에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Joo, Haeng-Ro;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.873-878
    • /
    • 2009
  • When the transmission lines are initially energized for power system restoration, the power system suffers the various overvoltages that can be classified as steady-state, transient, and dynamic overvoltages. For the accurate analyses of these overvoltages, many researchers utilize different simulation tools such as Power System Simulator for Engineering(PSS/E). Although PSS/E provides good solutions in steady-state and dynamic overvoltages, it is not suitable for transient overvoltages. Therefore, transient overvoltages are simulated by using Electro-Magnetic Transients Program(EMTP) developed for the analysis of transients in the power system. Recently, EMTP can be also used to simulate dynamic behavior of the system. In order to analyze the transient overvoltages with steady-state and dynamic overvoltages, the authors adopt EMTP as the simulation tool for the analysis of overvoltages. This paper presents the simulation results for the analyses of various overvoltages, and the possibility of EMTP to be used for these types of analyses.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Experimental and numerical investigation of composite conical shells' stability subjected to dynamic loading

  • Jalili, Sina;Zamani, Jamal;Shariyat, M.;Jalili, N.;Ajdari, M.A.B.;Jafari, M.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.555-568
    • /
    • 2014
  • In this article, stability of composite conical shells subjected to dynamic external pressure is investigated by numerical and experimental methods. In experimental tests, cross-ply glass woven fabrics were selected for manufacturing of specimens. Hand-layup method was employed for fabricating the glass-epoxy composite shells. A test-setup that includes pressure vessel and data acquisition system was designed. Also, numerical analyses are performed. In these analyses, effect of actual geometrical imperfections of experimental specimens on the numerical results is investigated. For introducing the imperfections to the numerical models, linear eigen-value buckling analyses were employed. The buckling modes are multiplied by very small numbers that are derived from measurement of actual specimens. Finally, results are compared together while a good agreement between results of imperfect numerical analyses and experimental tests is observed.

Seismic assessment of existing r.c. framed structures with in-plan irregularity by nonlinear static methods

  • Bosco, Melina;Ferrara, Giovanna A.F.;Ghersi, Aurelio;Marinoc, Edoardo M.;Rossi, Pier Paolo
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.401-422
    • /
    • 2015
  • This paper evaluates the effectiveness of three nonlinear static methods for the prediction of the dynamic response of in-plan irregular buildings. The methods considered are the method suggested in Eurocode 8, a method previously proposed by some of the authors and based on corrective eccentricities and a new method in which two pushover analyses are considered, one with lateral forces applied to the centres of mass of the floors and the other with only translational response. The numerical analyses are carried out on a set of refined models of reinforced concrete framed buildings. The response predicted by the nonlinear static analyses is compared to that provided by nonlinear dynamic analyses. The effectiveness of the nonlinear static methods is evaluated in terms of absolute and interstorey displacements.

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

A Study on Evaluation of Vibration Reduction Effect of Concrete tracks (콘크리트 궤도 유형별 진동성능평가에 대한 연구)

  • Yang, Shin-Chu;Kim, Eun;Kang, Yun-Suk;Um, Ju-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.911-916
    • /
    • 2002
  • One of important roles of concrete track is to reduce vibration transmitting to subgrade. In this paper, a numerical method for evaluating the effects of vibration reduction of concrete track is presented. Using the method, high frequency dynamic analyses and track-tunnel-soil interaction analyses are carried out for three types of concrete track in order to investigate the vibration reduction effects compared with normal ballast track.

  • PDF