• Title/Summary/Keyword: dynamic algorithm

Search Result 4,595, Processing Time 0.03 seconds

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.

지하수유동해석을 위한 한국형 분석시스템의 개발 (Koreanized Analysis System Development for Groundwater Flow Interpretation)

  • 최윤영
    • 한국방재학회 논문집
    • /
    • 제3권3호
    • /
    • pp.151-163
    • /
    • 2003
  • 본 연구에서는 한국형 지하수 프로그램 개발(3-DFM, 3-Dimensional Finite Difference Method)을 위하여 대수층에 있어 지형 지질상태가 지하수유동시스템내에서 동적거동을 하는 것으로 취급하여 유동과정의 알고리즘을 확립토록 하였다. 본 연구에서 개발된 3-DFM모델은 입력변수 자료에 대한 설정이 모두 한글로 구성되어 있으며, 각 입력자료와 매개변수들의 이해와 적용치에 대한 도움말을 설정하여 두었다. 따라서, 입력변수에 대해서는 아이콘을 입력변수에 두면 각각에 대한 상세한 정보를 알 수 있도록 설계하였다. 또한, 각 지층의 지질경계 상태나 초기수위자료를 지정할 때는 work sheet상에서 간단히 지정할 수 있도록 설계되어 있다. 그리고 각 대수층의 특성과 더불어 정류 및 부정류 해석시에 각 매개변수들에 대한 입력은 기존의 모델과 같이 복잡하지 않도록 활성칸이 설정되도록 설계되어 있다. 최종 입력자료를 이용한 분석결과에서는 우측에 입력자료에 대하여 설명과 더불어 좌측에 분석 결과치를 나타나게 하였으며 이에 대한 결과는 TXT파일로도 출력할 수 있도록 설정하였다. 본 연구에서 개발된 모델은 유한차분법을 이용한 수치모델이며, 실제 함양량을 적용하고 매개변수들을 결정하여 관측 지하수두치와 모의발생으로 얻은 계산 지하수두치를 비교 분석하여 개발모델의 적용성을 검토하였다. 본 연구에서는 제주도 세화리 및 송당리일대의 양수에 따른 지하수 유동시스템 해석을 위하여 3-DFM모델을 적용 분석한 결과, 정류상태에서 따른 관측치와 계산된 지하수두와의 상대오차백분율(E.P.)이 $0.03{\sim}0.07$의 범위로서 관측치와 거의 일치하였다. 그리고 분석유역의 양수 전의 모의발생분석 결과를 이용하여 지하등수두분포와 유속벡터를 산정한 결과 지하수 유동분포는 높은오름과 문석이오름 등에서 월랑봉, 용눈이오름 및 손자봉 등 각 방향으로 고르게 유출되고 있는 것으로 분석되었다. 이러한 분석결과는 MODFLOW모델과 비교할 때 일치된 결과를 나타내었다.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

흡연자에서 관상동맥 내피세포 의존성 심근 혈류 예비능: $H_2^{15}O\;PET$ 찬물자극 검사에 의한 평가 (Evaluation of Endothelium-dependent Myocardial Perfusion Reserve in Healthy Smokers; Cold Pressor Test using $H_2^{15}O\;PET$)

  • 황경훈;이동수;이병일;이재성;이호영;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권1호
    • /
    • pp.21-29
    • /
    • 2004
  • 목적: 젊은 흡연자 및 비흡연자에서 찬물자극 후 심근혈류 예비능을 $H_2^{15}O\;PET$을 이용하여 측정한 후 비교함으로써 흡연에 의한 관상동맥 내피세포의 기능저하를 평가하고자 하였다. 대상 및 방법: 젊은 흡연자 9명($23.8{\pm}1.1$세; $6.6{\pm}2.5$ pack-years) 및 비흡연자 9명($23.8{\pm}2.9$세)에 대하여 안정상태 및 찬물자극 후, 그리고 아데노신 주입 중에 $H_2^{15}O$를 순간주사하고 동적 PET영상을 획득한 뒤, NMF 방법으로 입력 방사능곡선 및 조직 방사능곡선을 처리하여 심근혈류량을 산출하였다. 결과: 흡연자군 및 비흡연자군 사이에 심박수혈압곱 및 안정시 혈류량에는 유의한 차이가 없었다. 그러나, 찬물자극 자극 후에는 심근혈류가 흡연자군에서 비흡연자군에 비하여 유의하게 낮았으며(흡연자군 심근혈류 : $1.25{\pm}0.34$ ml/g/min, 비흡연자군 심근혈류=$1.59{\pm}0.29$ ml/g/min ; p=0.019), 특히 안정시 심근혈류에 대한 찬물자극 후의 심근혈류의 비(내피세포 기능에 의한 심근혈류의 예비능)도 흡연자에서 유의하게 낮았다(흡연자군=$90{\pm}24%$, 비흡연자군=$122{\pm}28%$ ; p=0.024). 한편, 아데노신 주입시의 심근혈류는 두군 간에 유의한 차이가 관찰되지 않았다(흡연자군 심근혈류=$5.81{\pm}1.99$ ml/g/min, 비흡연자군 심근혈류=$5.11{\pm}1.31$ ml/g/min ; p=NS). 결론: 젊은 흡연자에서 찬물자극 후에 $H_2^{15}O\;PET$을 이용하여 측정하여 산출한 심근혈류의 예비능이 젊은 비흡연자에 비하여 감소되어 있어서 흡연에 의한 관상동맥 내피세포의 기능장애를 확인할 수 있었다.

실시간 렌더링 환경에서의 3D 텍스처를 활용한 GPU 기반 동적 포인트 라이트 파티클 구현 (GPU-based dynamic point light particles rendering using 3D textures for real-time rendering)

  • 김병진;이택희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권3호
    • /
    • pp.123-131
    • /
    • 2020
  • 본 연구는 10만 개 이상의 움직이는 파티클 각각이 발광원으로서 존재할 때 라이팅을 위한 실시간 렌더링 알고리즘을 제안한다. 각 라이트의 영향 범위를 동적으로 파악하기 위해 2개의 3D 텍스처를 사용하며 첫 번째 텍스처는 라이트 색상 두 번째 텍스처는 라이트 방향 정보를 가진다. 각 프레임마다 두 단계를 거친다. 첫 단계는 Compute shader 기반으로 3D 텍스처 초기화 및 렌더링에 필요한 파티클 정보를 갱신하는 단계이다. 이때 파티클 위치를 3D 텍스처의 샘플링 좌표로 변환 후 이 좌표를 기반으로 첫 번째 3D 텍스처엔 해당 복셀에 대해 영향을 미치는 파티클 라이트들의 색상 총합을, 그리고 두 번째 3D 텍스처에 해당 복셀에서 파티클 라이트들로 향하는 방향벡터들의 총합을 갱신한다. 두 번째 단계는 일반 렌더링 파이프라인을 기반으로 동작한다. 먼저 렌더링 될 폴리곤 위치를 기반으로 첫 번째 단계에서 갱신된 3D 텍스처의 정확한 샘플링 좌표를 계산한다. 샘플링 좌표는 3D 텍스쳐의 크기와 게임 월드의 크기가 1:1로 대응하므로 픽셀의 월드좌표를 그대로 샘플링 좌표로 사용한다. 샘플링한 픽셀의 색상과 라이트의 방향벡터를 기반으로 라이팅 처리를 수행한다. 3D 텍스처가 실제 게임 월드와 1:1로 대응하며 최소 단위를 1m로 가정하는데 1m보다 작은 영역의 경우 해상도 제한에 의한 계단 현상 등의 문제가 발생한다. 이러한 문제를 개선하기 위한 텍스처 샘플링 시 보간 및 슈퍼 샘플링을 수행한다. 한 프레임을 렌더링하는데 소요된 시간을 측정한 결과 파티클이 라이트의 개수가 262144개일 때 Forward Lighting 파이프라인에서 146ms, deferred Lighting 파이프라인에서 46ms 가 소요되었으며, 파티클 라이트의 개수가 1024576개일 때 Forward Lighting 파이프라인에서 214ms, Deferred Lighting 파이프라인에서 104ms 가 소요되었다.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

캐시 메모리의 유용성을 높이는 동적 선인출 필터링 기법 (A Dynamic Prefetch Filtering Schemes to Enhance Usefulness Of Cache Memory)

  • 전영숙;이병권;이춘희;김석일;전중남
    • 정보처리학회논문지A
    • /
    • 제13A권2호
    • /
    • pp.123-136
    • /
    • 2006
  • 캐시 선인출 기법은 메모리 참조에 따른 지연시간을 줄이는 효과적인 방법이다. 그러나 너무 적극적으로 선인출할 경우에 캐시 오염을 유발시켜 선인출에 의한 장점을 상쇄시킬 뿐만 아니라 버스 트래픽을 증가시켜 전체 성능의 저하를 가져 올 수 있다. 본 연구에서는 선인출로 인한 캐시의 오염을 줄이기 위해 필터 테이블을 참조하여 선인출 명령을 수행할 지의 여부를 동적으로 판단하는 선인출 필터링 기법을 제시한다. 본 논문에서는 먼저 기존 연구에서의 문제점을 분석하기 위해 선인출 해싱 테이블 lbitSC 기법을 보였는데, 이 기법은 기존 연구와 같이 N:1 매핑을 사용하는 반면, 각 엔트리의 값을 1비트로 하여 두 가지 상태값을 갖도록 하였다. 비교 연구를 위해 완전 블록주소 테이블 기법을 제시하여 비교 기준으로 사용하였다. 마지막으로 본 논문의 주 아이디어인 정교한 필터링을 위한 선인출 블록주소 참조 테이블 기법을 제안하였다. 이 구조는 선인출 해싱 테이블 1bitSC기법과 같은 테이블 길이를 가지며, 각 엔트리의 내용은 완전 블록주소 테이블 기법과 같은 항목을 가지도록 하여 최근에 미 사용된 데이터의 블록주소가 필터 테이블의 하나의 엔트리와 대응되도록 1:1 매핑을 하였다. 일반적으로 많이 사용되는 선인출 기법과, 일반 벤치마크 프로그램과 멀티미디어 벤치마크 프로그램들에 대하여 캐시의 매개변수들을 변화시켜가면서 실험을 하였다. PBALT기법은 필터링 하지 않은 경우에 비해 최대 22% 향상된 결과를 보이고, 기존 PHT2bSC 기법과 비교하여 캐시 미스율이 7.9% 감소하였다. 메모리 참조 지연 시간(MADT)은 제안하는 PBALT 기법이 기존 연구에 비해 6.1% 감소하여 전체 수행 시간에 있어서 성능이 향상되었다.

건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여 (Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE)

  • 장하렴;유지수;양성병
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.57-84
    • /
    • 2023
  • 현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수 있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과 같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는 학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 'recommender system', 'wireless & IoT', 'computer vision', 'text mining' 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.

식생의 뿌리 점착력과 지표유출의 흐름 조건을 고려한 산사태의 발생 특성 분석: 충청북도 제천지역의 사례를 중심으로 (Analysis of Landslide Occurrence Characteristics Based on the Root Cohesion of Vegetation and Flow Direction of Surface Runoff: A Case Study of Landslides in Jecheon-si, Chungcheongbuk-do, South Korea)

  • 이재욱;조용찬;김석우;김민석;오현주
    • 한국산림과학회지
    • /
    • 제112권4호
    • /
    • pp.426-441
    • /
    • 2023
  • 본 연구에서는 수확벌채에 따른 수목의 뿌리 점착력의 변화와 토양의 포화를 가정한 지표유출의 세 가지 흐름 기법(SFD; Single flow direction, MFD; Multiple flow direction, IFD; Infinite flow direction)을 무한사면 안전율 공식에 적용하여 산사태 발생 예측 모델링의 정확성을 분석하였다. 이를 위해 2020년 8월 집중호우의 영향으로 자연사면과 벌채사면에서 다수의 산사태가 발생한 제천지역을 연구지역으로 선정하였다. 위성영상과 25cm급 항공사진을 이용한 산사태 인벤토리 맵핑 결과, 연구지역 내에서 총 830개소의 산사태 발생원이 확인되었다. 산사태 모델링 결과, 벌채에 따른 뿌리 점착력의 변화를 고려한 경우(MFD: 0.81, IFD: 0.80, SFD: 0.80)가 벌채의 영향을 고려하지 않은 경우(MFD: 0.79, IFD: 0.79, SFD: 0.78)에 비하여 AUROC(Area Under the Receiver Operating Characteristics) 분석에서 정확성이 1.3~2.6% 향상되는 것으로 나타났다. 또한, MFD 알고리즘을 이용한 경우는 다른 알고리즘과 비교하여 AUROC 분석에서 정확성이 최대 1.3% 향상되었다. 이러한 결과는 식생조건의 변화를 고려한 뿌리 점착력의 차등 적용과 지표유출수 흐름기법의 선정이 산사태 예측 모델링에 영향을 미칠 수 있음을 시사한다. 향후 이 연구의 결과는 현지 수문모니터링과 함께 수종별 뿌리 점착력의 특징 및 변화를 고려하여 검증되어야 할 것이다.