• Title/Summary/Keyword: dynamic CT

Search Result 154, Processing Time 0.011 seconds

Comparison of Image Quality and Dose between Intra-Venous and Intra-Arterial Liver Dynamic CT using MDCT (MDCT를 이용한 역동적 간 컴퓨터단층촬영 검사에서 정맥과 동맥 주입법에 따른 영상의 화질 및 선량 비교)

  • Ji-Young, Kim;Ye-Jin, Cho;Hui-Hyeon, Im;Ju-Hyung, Lee;Yeong-Cheol, Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • The purpose of this study was to analyze differences in imaging quality and dose difference between intra-venous (IV) and intra-arterial (IA) liver dynamic computed tomography (CT). Herein, retrospective, blinded analysis was conducted to analyze signal-to-noise and contrast-to-noise ratios in cases of patients who underwent IV or IA liver dynamic CT for transarterial chemoembolization (TACE), an interventional procedure for hepatocellular carcinoma. The dose length product (DLP) value stored in Picture Archive and Communication System (PACS) was used to calculate the effective dose and thereby compare differences in the dose between the two methods. The mean liver and spleen signal to noise ratio (SNR) was greater in IV-liver dynamic CT than in IA-liver dynamic CT; however, contrast to noise ratio (CNR) was higher in IA-liver dynamic CT than in IV-liver dynamic CT. However, there were no differences in DLP and effective dose between the two methods. In conclusion, our findings showed that IA-liver dynamic CT showed a similar effective dose and superior CNR compared with IV-liver dynamic CT. Further studies must analyze 3D angiography CT of the hepatic artery to clearly distinguish the feeding artery, which is the essential step in interventional procedures for hepatocellular carcinoma.

The Role of Dynamic CT for the Differential Diagnosis of Solitary Pulmonary Nodule (고립성 폐결절의 감별진단에서 Dynamic CT의 역할)

  • Chung, Jin-Hong;Park, Won-Jong;Cho, Ihn-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Background : Malignant pulmonary nodules account for 30 to 40 percent of all solitary pulmonary nodules (SPNs). Therefore, characterization of SPNs is very important for treatment. Recently, dynamic CT has been widely used for tissue characterization and formation of differential diagnoses. The purpose of this study was to evaluate the ability of dynamic CT to formulate the differential diagnosis of SPNs. Materials and Methods : Nineteen patients with SPNs underwent dynamic CT (unenhanced scans, followed by a series of images at 20, 40, 60, 80, 100, 120, 140, 160, and 180 sec after intravenous injection of contrast medium). Diagnosis of SPN was performed based on pathologic findings in needle biopsy samples. Peak enhancement, net enhancement, slope of enhancement, and maximum relative enhancement ratio of the SPN were measured on dynamic CT, and Levene's test was performed to assess benignancy and malignancy. Results : Twelve SPNs were confirmed to have malignant pathology. There were no significant differences between benign and malignant nodules with respect to peak enhancement (p=0.787), net enhancement (p=0.135), or slope of enhancement (p=0.698). The maximal enhancement ratio was increased in malignancy compared to benignancy, but the difference was not statistically significant (p=0.094). Conclusion : In our study, the hemodynamic characteristics of dynamic CT were not significantly different between benign and malignant nodules. Therefore, long-term studies of larger patient samples are required to confirm our findings.

  • PDF

Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy (두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가)

  • Kwon, Dong Yeol;Kim, Jin Man;Chae, Moon Ki;Park, Tae Yang;Seo, Sung Gook;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.

Dynamically Collimated CT Scan and Image Reconstruction of Convex Region-of-Interest (동적 시준을 이용한 CT 촬영과 볼록한 관심영역의 영상재구성)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.151-159
    • /
    • 2014
  • Computed tomography (CT) is one of the most widely used medical imaging modality. However, substantial x-ray dose exposed to the human subject during the CT scan is a great concern. Region-of-interest (ROI) CT is considered to be a possible solution for its potential to reduce the x-ray dose to the human subject. In most of ROI-CT scans, the ROI is set to a circular shape whose diameter is often considerably smaller than the full field-of-view (FOV). However, an arbitrarily shaped ROI is very desirable to reduce the x-ray dose more than the circularly shaped ROI can do. We propose a new method to make a non-circular convex-shaped ROI along with the image reconstruction method. To make a ROI with an arbitrary convex shape, dynamic collimations are necessary to minimize the x-ray dose at each angle of view. In addition to the dynamic collimation, we get the ROI projection data with slightly lower sampling rate in the view direction to further reduce the x-ray dose. We reconstruct images from the ROI projection data in the compressed sensing (CS) framework assisted by the exterior projection data acquired from the pilot scan to set the ROI. To validate the proposed method, we used the experimental micro-CT projection data after truncating them to simulate the dynamic collimation. The reconstructed ROI images showed little errors as compared to the images reconstructed from the full-FOV scan data as well as little artifacts inside the ROI. We expect the proposed method can significantly reduce the x-ray dose in CT scans if the dynamic collimation is realized in real CT machines.

Dynamic CT Finding of Pelioid HCC ; Case Report (자색반형 간세포암종의 Dynamic CT 영상소견; 증례보고)

  • Son, Rak-Chae;Kim, Jae-Woon;Chang, Jae-Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.146-149
    • /
    • 2010
  • Pelioid hepatocellular carcinoma(HCC), a type of atypical HCC, is a rare histologic type of HCC. The radiologic findings of the pelioid HCC is differ from the typical type of HCC. To our knowledge, this case report is the second literature to show the enhancing features of a pelioid HCC on dynamic computed tomography (CT).Here we describe the dynamic CT findings in a case of surgically confirmed pelioid HCC.

  • PDF

CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard

  • Yarong Yu;Lihua Yu;Xu Dai;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1964-1973
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods: Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results: ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08-0.17] vs. 0.04 [0.01-0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81-0.89] vs. 0.91 [0.88-0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717-0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion: ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.

Establishment of Injection Protocol of Test Bolus for Precise Scan Timing in Canine Abdominal Multi-Phase Computed Tomography

  • Choi, Sooyoung;Lee, In;Choi, Hojung;Lee, Kija;Park, Inchul;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.93-96
    • /
    • 2018
  • This study aimed to establish an injection protocol to determine the precise CT scan timing in canine abdominal multi-phase CT using the test bolus method. Three dynamic scans with different contrast injection parameters were performed using a crossover design in eight normal beagle dogs. A contrast material was administered at a fixed dose of 200 mg iodine/kg as a test bolus for dynamic scans 1 and 2, and 600 mg iodine/kg as a main bolus for dynamic scan 3. The contrast materials were administered with 1 ml/s in dynamic scan 1, and 3 ml/s in dynamic scan 2 and 3. The mean arrival time to the appearance of aortic enhancement in dynamic scan 3 was similar to that in dynamic scan 2, and different significantly to that in dynamic scan 1. The mean arrival time to the peak aortic and pancreatic parenchymal enhancement in dynamic scan 3 was similar to that in dynamic scan 1, and different significantly to that in dynamic scan 2. In multi-phase CT scan, a test bolus should be injected with the same injection duration of a main bolus, to obtain the precise arrival times to peak of arterial or pancreatic parenchymal enhancement.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Dynamic Response Characteristics of Distance Relay Including the Instrumental Devices (계기용 변성기를 포함한 거리계전기의 동특성 해석)

  • 김남호;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.227-236
    • /
    • 1992
  • In this paper, a simulation program of relaying system including the CT and CPD ( capacitive potential device ) is developed to study the effect of its operation under various system conditions. To deal with the dynamic characteristics of relaying system, state space technique is applied, and then the state equations of CT, CPD and mho distance relay are constructed. Also the dynamic response characteristics of overall relaying system is verified by digital simulation. Since the proposed model is capable of taking arbitrary input waveforms from EMTP in analyzing its dynamic responses, the effects of CT-saturation and CPD-subsidence transient characteristics on the operating points of who distance relay can be accurately prodicted. It gives more effective results, compared with the model without considering those characteristics by checking the exprimental data.

Radiological Diagnosis for Posttraumatic Olfactory Dysfunction (외상 후 후각이상에 대한 방사선학적 진단)

  • Ahn, Jung Yong;Joo, Jin Yang;Chung, Tae Sub
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.12
    • /
    • pp.1570-1576
    • /
    • 2000
  • Objective : To evaluate objectively the sites of injury in patients with posttraumatic olfactory deficits and to suggest the diagnostic procedure for evaluation of posttraumatic anosmia. Methods : Ten patients with posttraumatic olfactory dysfunction were examined by means of olfactory testing, sinoscopy, contrast filled paranasal sinus computed tomography(contrast filled PNS CT) and magnetic resonance imaging(MRI). Five normal persons without olfactory dysfunction were also evauluated. The aerodynamic patency of olfactory cleft was examined by contrast filled PNS CT. The olfactory system(oflactory bulbs, olfactory tracts, inferior frontal region, hippocampi, or temporal lobes) was investigated in detail with MRI. The difference in the size of the olfactory bulb between normal volunteers and anosmic patients was evaluated by Student's t test. Results : Contrast filled dynamic CT scan was useful method for the evaluation of dynamic patency of the olfactory cleft. Paranasal CT scan of the all anosmic patients showed dynamic reflux of contrast media in olfactory cleft on valsalva maneuver. For the largest cross-sectional area and great height, the difference in olfactory bulb size between normal volunteers and patients was statistically significant(p<0.001) in MRI study. Conclusion : Posttraumatic anosmia was completely evaluated by olfactory testing, sinoscopy, and contrast filled CT scan for differentiation between conductive type and neurogenic type. Neurogenic anosmia was confirmed by perfect localization with MRI study.

  • PDF