• Title/Summary/Keyword: dyers

Search Result 2,715, Processing Time 0.021 seconds

Improvement of Heat Resistant of Adhesion between m-Aramid Sheet and Metal Materials using Epoxy/Phenolic Resin (Epoxy/Phenolic resin을 활용한 메타-아라미드 시트지와 금속 소재의 내열접착성 향상)

  • Kang, Chan Gyu;Chae, Ju Won;Choi, Seung Jin;Lee, Ji Su;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • This study tried to analyze the heat resistance properties by blending epoxy and phenolic resin in a certain ratio, and to analyze the adhesive properties at the time of metal-polymer hetero-adhesion by applying Epoxy-phenolic resin between a silicon steel sheet and m-aramid sheet, the viscosity, adhesive peel strength, and adhesive cross section were measured using a rotational rheometer, a tensile tester(UTM), and a field emission scanning electron microscopy(FE-SEM). The thermal stability and heat resistance were confirmed by measuring the mass loss according to the temperature increase using Thermogravimetric analysis(TGA). After blending with epoxy and Phenolic resin(1:0.25 ratio) curing at 110℃ for 10 min, high adhesive strength was improved more than 40% compared to the adhesive strength using epoxy alone. When the space between the silicon steel sheet and m-aramid sheet, which is created during curing of the E-P blend, is cured with a slight weight, it is possible to control the empty space and improve adhesion.

Performance Analysis of Ink for Digital Textile Printing Using Natural Indigo (천연 인디고를 활용한 Digital Textile Printing용 잉크의 성능 분석)

  • Lee, Won Kyoung;Sung, Eun Ji;Moon, Joung Ryul;Ahn, In Yong;Yoon, Kwang Ho;Park, Yoon Cheol;Kim, Jong Hoon
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.202-209
    • /
    • 2021
  • Natural dyes are more expensive than synthetic dyes and the dyeing process, which is mainly immersion of dye, is complicated. For this reason, relatively small-scale production methods were predominant. However, awareness and interest in environmental sustainability is rising globally, and the use of synthetic dyes causes various environmental problems such as wastewater and CO2 emission, so the consumption of natural dyes is increasing. In addition, interest in digital textile printing, an eco-friendly dyeing method that can produce products of various designs and uses less water, is growing. In this study, natural indigo dye (Indigofera tinctoria) was used as a raw material for Digital Textile Printing ink, and 14C (Biocarbon) present in it was measured to confirm whether it was derived from natural ingredients. The performance was confirmed by testing the pH, viscosity, electrical conductivity, surface tension, and particle size analysis of natural indigo ink. In addition, the performance of natural indigo DTP ink and printing fabric was evaluated by inspecting the change in color fastness and corresponding index substances before and after digital printing with natural indigo DTP ink on textiles. Through this, the possibility of commercialization of DTP ink and printing fabric using natural indigo was confirmed.

Air-Filter Media Characteristics of Wet-laid Nonwoven based on HDPE Plexi-filament (고밀도 폴리에틸렌 플렉시 필라멘트로 제조된 습식부직포의 에어필터 여재 특성 연구)

  • Bae, Younghwan;Wee, Jae-Hyung;Lee, Myungsung;Yeang, Byeong Jin;Kim, Dokun;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.302-308
    • /
    • 2021
  • Air filters are being used in countless places from industrial sites to everyday life. The spread of the COVID-19 virus, which started in 2019, is disrupting people's daily lives, and the importance of air filters as a basic means to prevent the spread of these diseases is further highlighted. In this study, the purpose was to develop another type of air filter media with excellent barrier properties that can replace PP meltblown nonwoven fabrics widely used commercially due to its excellent electrostatic properties, differential pressure and filtration efficiency. Therefore, wet-laid nonwoven for air filters were manufactured using plexi-filaments formed through flash spinning and having various fiber diameter from hundreds of nanometers to tens of micrometers, and its applicability as an air-filter media was investigated compared to the meltblown nonwoven. As a result of the performance evaluation, it was found that the filtration efficiency and barrier performance at 0.3㎛ was superior to that of the meltblown nonwoven of the same weight, although the differential pressure was high due to morphological properties of the plexi-filament.

Effect of Hole Processing Condition on Carbon Fiber-Reinforced Plastic Composites for Lightweight Combat Backpack Frames (전투 배낭 프레임 경량화를 위한 섬유강화복합재의 홀가공 조건이 미치는 영향)

  • Kim, Hyeok-Jin;Kwon, Dong-Jun;Lee, Jea-Dong;Son, Hyun-Sik;Jin, Young-ho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.241-249
    • /
    • 2022
  • As for military backpacks in Korea, utility backpack products equipped with various functions along with comfort and convenience are being developed. As a result, the volume and weight of the backpack increase, and many lightweight studies of the materials forming the backpack are being conducted. This study is a basic study on frame lightweight using fiber-reinforced composites to deal with aluminum, a back frame that maintains the shape of a backpack and provides stability when worn by combatants. As is known, only fiber-reinforced composites have sufficient light weight and mechanical properties, but the mechanical properties were reviewed by drilling holes to maximize the light weight. Tensile strength and flexural strength were measured by drilling 6mm, 12mm, 18mm, and 24mm holes, and the tensile strength and flexural strength were measured when 1, 3, 5, and 7 holes of 12mm were increased. As a result, even when the number of holes was increased, tensile strength did not change significantly, and the flexural strength showed to be higher in the case of 3 holes and 5 holes than in the case of 1 hole.

A Study on Pretreatment and Dyeing Characteristics of High-density Two-way Elastic Knitted Fabric using CDP Yarn and PU Yarn (CDP사와 PU사를 사용한 고밀도 양방향 신축성 편물의 전처리 및 염색 특성에 관한 연구)

  • Cho, Hang Sung;Woo, Jang Chang;Lee, Beom Soo
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.224-233
    • /
    • 2022
  • Recently, consumer tastes of various classes at home and abroad prefer comfortable, unadorned, and simple clothing, and the athleisure trend, which can be used freely in daily life as well as exercise, has expanded to overall clothing products. Existing materials used for athleisure are composite knitted fabrics using polyester yarn and PU yarn, which has problems due to a chronic lack of color fastness and contamination by dyes even when PU laminating is applied, making it difficult to apply various colors. There is a quality problem in which deformation of the product occurs due to lack of durability. In this study, CDP yarn(75de/72f) and PU yarn(40de) were selected to commercialize the circular knitting for athleisure using CDP yarn in order to solve the problems that occur in the dyeing and laminating process when using polyester materials. CDP yarns were used to knit into single(CP75-S) and double(CP75-D) knit and single knit were found to be suitable as athleisure fabrics. After pretreatment and treatment under various conditions, the stainability of CDP circular knitting was examined. After pretreatment and dyeing process under various conditions, the property of scouring and dyeability of CP75-S were evaluated.

A Study on Conferring Orientation to Myoblast for Realizing Tissue of Cultured Meat (배양육 조직구현을 위한 배향성 부여에 관한 연구)

  • Seok, Yong-Joo;Zo, Sun-Mi;Choi, Soon-Mo;Han, Sung Soo
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.284-301
    • /
    • 2022
  • The limitations of food production caused by global warming, consumption of soil fertility, and land shortage have demanded the development of alternative foods. Their market has been increasing, and in particular, there is an urgent need for an alternative meat. Among them, the non-slaughtered cell-cultured meat that can be manufactured in the laboratory, that is, cultured meat, is in the spotlight, which can solve the problem of meat consumption while including the advantages of meat. It is classified into minced cultured meat and structured one with a structure similar to that of real meat. The latter is currently facing limitations related scaffolds, cells, and the multiplicative problems, and many attempts are being made to solve them. The complex problem is related to secure texture and taste as well as structural similarity to actual meat. To solve the problems, it is necessary to lay emphasis on cells, there are fat cells and vascular cells, and the most fundamental cells, muscle cells. These are the main cells that control the texture and nutrients of meat, and unlike other cells, they grow in the form of fibers. A myofibril (also known as a muscle fibril) is a basic rod-like organelle of a muscle cell, which is a quantitatively major component of meat, and one of the tissues that maintain the appearance of the body and bones. In this review article, we focused on the growth of muscle cells into long, tubular cells known as muscle fibers using the fabricated fibrous scaffold, and reviewed not only research results for muscle tissue engineering but also various results in the related fields for the last five years.

The Physical Properties and Performance of Products for Eyelash Monofilaments (속눈썹용 원사의 물리적 성질 및 제품성능)

  • Son, Eun Jong;Ahn, Jae Sang;Yoon, Hye Jun;Shin, Hee Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.272-283
    • /
    • 2022
  • In this study, the flat-section monofilaments of PBT for artificial eyelashes was developed, and the physical properties of the circular cross-section of artificial eyelashes were compared and observed, and the main performance of the artificial eyelash prototype was observed through processing for artificial eyelashes. In addition, a satisfaction survey of the prototype was conducted through a survey of consumers and artificial eyelash operators. It was found that the bending stiffness value of the monofilaments increased significantly as the thickness increased. As a result of measuring the bending properties of the flat-section PBT monofilaments, the bending stiffness was significantly lower than that of the circular-section PBT specimens of the same thickness. The deformed cross-section PBT monofilaments with flat cross sections developed in this study showed a light weight factor of less than 50% compared to the existing circular cross-section PBT ones. The adhesive strength of the developed PBT artificial specimens was greater than that of the existing circular cross-section yarn. It was also observed that the curl stability over time was excellent. As a result of the consumer survey, it was possible to obtain more than 85% of positive answers in the case of consumer subjects, and it was possible to investigate that the satisfaction of the operator subjects was more than 80% compared to the existing round-section eyelashes.

Natural Indigo Dyeing of Hanji Fabric using Baker's Yeast: Effect of Yeast Concentration and Repeat Dyeing (효모를 사용한 한지직물의 천연인디고 염색 : 효모농도와 반복염색 효과)

  • Son, Kyunghee;Shin, Younsook;Yoo, Dong Il
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.191-201
    • /
    • 2021
  • In this study, an eco-friendly indigo reduction system(scale up reduction, use of buffer solution, and pH control) using baker's yeast(Saccharomyces cerevisiae) was applied for natural indigo(Polygonum tinctorium) dyeing of Hanji fabric and Hanji-mixture fabric(Hanji/Cotton, Hanji/Silk). The effect of concentration of baker's yeast, repeat dyeing, and bath reuse was investigated in terms of dye uptake indicating reduction power. And the oxidation-reduction potential(ORP) was monitored. We also evaluated color properties and colorfastness according to the color strength. The yeast concentration did not significantly affect the maximum reduction power. However, the highest yeast concentration was effective in improving the initial dye uptake, and its the reduction retention power was the most excellent. Even on the last reduction day, the effect of increasing the dye uptake by repeat dyeing was observed. And it was confirmed that the reduction bath could be reused for up to 30 days by supplementing yeast at the end of reduction. For all the fabrics used, deeper and darker PB color were obtained by repeat dyeing. As dyeing was repeated, purplish tint got stronger on the Hanji/Silk fabric compared to other fabrics. Regardless of the composition of Hanji fabrics and color strength, washing and dry cleaning fastness were relatively good with above rating 4-5, and fastness to rubbing and light were acceptable with a rating 3-4 ~ 4-5. The eco-friendly natural indigo dyeing process using niram and baker's yeast would offer global marketability and diversity of Hanji product as a sustainable high value-added material.

A Study on the Effect of Oyster Shell Surfase Modified with Rare Earth Coupling Agent on Eco-Friendly Bio-EPDM Foam (Rare earth coupling agent로 표면개질된 Oyster shell이 친환경 Bio-EPDM 발포체에 미치는 영향 연구)

  • Seo, Eun Ho;Lim, Sung Wook;Park, Kyung Soon;Park, Eun Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.317-326
    • /
    • 2021
  • In this study, we investigated for Bio-EPDM foam with oyster shell surface modified earth coupling agent. Experiments were carried out to confirm the bio-EPDM/Oyster shell foam applying content of earth coupling agent. The cure characterization were evaluated by measuring the mooney viscosity and oscillating disc rheometer (ODR). Mechanical properties such as hardness, tensile strength, elogation at break and tear strength were measured, and changes of mechanical properties were also evaluated after immersion in NaCl solution. In addition degree of volume change was measured after immersing the Bio-EPDM foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. To evaluate the low-temperature characteristics of Bio-EPDM/Oyster shell, the glass transition temperature was measured using Differential Scanning Calorimeter (DSC). As a result as the content of the earth coupling agent increased up to 3phr, the crosslinking density and mooney viscosity increased, and the mechanical properties and low-temperature permanent compression set improved, but from 4phr, it was rather decreased. The change in the glass transition temperature was insignificant, and the foam cell appeared to be uniform when the earth coupling agent was applied.

Simulation of the Stiffness of HTPE Fabric according to the Application of Reactive Pigment DTP Process and Dyeability (반응성 안료의 DTP공정 적용에 따른 HTPE원단의 태 시뮬레이션 및 염색성 연구)

  • Sim, Jee-hyun;Lee, Jong-hyuk;Yu, Seong-Hun;Gwon, Gi-Hwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.210-219
    • /
    • 2021
  • It was intended to conduct basic research to reduce development lead time and cost consumed in DTP process technology development. For the simulation of HTPE fabric, virtual engineering software was used to generate fiber model, yarn model, fabric model, and finite element model of HTPE fiber. The purpose of this study is to analyze the correlation and error rate between the stiffness numerical analysis results according to the direct DTP process parameters using reactive dyes in the generated finite element model and the stiffness measurements of the actual sample ac- cording to ASTM D1388. And, after dyeing the HTPE plain fabric according to the direct DTP process parameters, we want to analyze the dyeability of the HTPE fabric fabrics according to the direct DTP process parameters through the color fastness analysis. When looking at the results of the analysis of the finite element model, a higher value was shown when the distance between the nozzle and the fabric was 3mm than when the distance was 10mm. When the distance between the nozzle and the fabric was 10mm and 7mm, the reactive dye did not penetrate sufficiently, resulting in poor clarity when viewed with the naked eye.