• Title/Summary/Keyword: dye deposition

Search Result 89, Processing Time 0.025 seconds

The modification of materials for flexible Dye-Sensitized Solar Cells

  • Kim, Chang-Ho;Han, In-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1560-1563
    • /
    • 2009
  • We fabricated Dye-Sensitized Solar Cells(DSSCs) which are modified by using liquid crystals(LCs) and electro-deposition on cathode electrode in order to apply to flexible DSSCs. We deposited Pt metal layers on ITO electrode through the method of electro-deposition process during low-temperature. We could expect the long-term stability by using ionic liquid(IL) and liquid crystals(LCs). We can also see the enhancement of efficiency through orientation of LCs in gel-state electrolyte using liquid crystals at the DSSCs.

  • PDF

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

Sputter Deposition and Surface Treatment of $TiO_{2}$ films for Dye-Sensitized Solar Cells using Reactive RF Plasma (RF 스퍼터링 증착된 $TiO_{2}$ 박막의 염료감응형 태양전지 적용 연구)

  • Kim, Mi-Jeong;Seo, Hyun-Woong;Choi, Jin-Young;Jo, Jae-Suk;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.309-312
    • /
    • 2007
  • Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide($TiO_{2}$) films on indium tin oxide(ITO) coated glass substrate for dye-sensitized solar cells(DSSCs). Anatase structure $TiO_{2}$ films deposited by reactive RF magnetron sputtering under the conditions of $Ar/O_{2}$(5%) mixtures, RF power of 600W and substrate temperature of $400^{\circ}C$ were surface-treated by inductive coupled plasma(ICP) with $Ar/O_{2}$ mixtures at substrate temperature of $400^{\circ}C$, and thus the films were applied to the DSSCs, The $TiO_{2}$ Films made on these exhibited the BET specific surface area of 95, the pore volume of $0.3cm^{2}$ and the TEM particle size of ${\sim}25$ nm. The DSSCs made of this $TiO_{2}$ material exhibited an energy conversion efficiency of about 2.25% at $100mW/cm^{2}$ light intensity.

  • PDF

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • Wi, Jin-Seong;Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites

  • Lee, Jong-Ho;Kim, In-Ki;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.247-254
    • /
    • 2015
  • To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Effects of the Sputtering Thickness and the Incident Angle of Pt Film Deposition as a Counter Electrode for Dye-sensitized Solar Cells (염료감응형 태양전지의 상대전극 Pt 필름 두께와 증착 각도가 효율에 미치는 영향에 관한 연구)

  • Kim, Hee-Je;Yeo, Tae-Bin;Park, Sung-Joon;Kim, Whi-Young;Seo, Hyun-Woong;Son, Min-Kyu;Chae, Won-Yong;Lee, Kyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.588-593
    • /
    • 2010
  • Sputter deposition on a Pt counter electrode was studied using radio frequency (RF) plasma as the improvement of incident photon to current conversion efficiency (IPCE) for dye-sensitized solar cells (DSCs). Effects of the sputtering thickness and the incident angle on a Pt counter electrode for DSCs were investigated. Experiments to get the optimal sputtering time for the performance of the DSCs were carried out. And it is found that the optimized sputtering time was 120 seconds, in addition, the incident angles of the substrate was adjusted from $0^{\circ}$ to $60^{\circ}$. The maximum efficiency of 5.37% was obtained at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.

Enhanced catalytic activity of Pt counter electrodes employing ZnO nanorods for dye-sensitized solar cells (Pt-ZnO 상대전극을 가지는 염료감응형 태양전지의 광전변환 특성 분석)

  • Lee, JeongGwan;Cheon, JongHun;Yang, HyunSuk;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.118.2-118.2
    • /
    • 2011
  • In order to increase the energy conversion efficiency of dye-sensitized solar cells (DSSCs), we employed a counter electrode that was platinum coated using a doctor blade technique on synthesized ZnO nanostructures on fluorinedoped tin oxide (FTO). The ZnO nanostructures possessing high electrochemical activity and large surface area of the counter electrode were grown by a chemical bath deposition (CBD) method at various times, 2, 4, and 8 h. The efficiency of DSSC with the Pt-ZnO counter electrode was improved 7.01% (grown for 2 h), 7.63% (grown for 4 h), and 6.13% (grown for 8 h), respectively. Compared with a standard DSSC without ZnO nanostructures, whose efficiency was 6.27%, the energy conversion efficiency increased approximately 22% for the DSSC with the Pt-ZnO (grown for 4 h) electrode. It indicates that the Pt coated on the ZnO nanostructure improves the electrocatalytic activity of the counter electrode.

  • PDF

ITO/CNT Nano Composites as a Counter Electrode for the Dye-Sensitized Solar Cell Applications (ITO/CNT 나노 복합체의 염료감응형 태양전지의 이용)

  • Park, Jong-Hyun;Pammi, S.V.N;Jung, Hyun-June;Cho, Tae-Yeon;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • The ITO/Cabon Nano Tube (CNT) nano composites were deposited by nano cluster deposition (ITO) and arc discharge deposition (CNT) on glass substrates. The structural, optical and photovoltaic performance of ITO/CNT nano composites as a counter electrode of dye-sensitized solar-cells (DSSCs) such films were investigated. At low temperature below $250^{\circ}C$, the ITO films deposited on CNT. The ITO/CNT nano composit showed a good optical and electrical property for the counter electrode of DSSCs. When the as-prepared ITO/CNT nano composites are used for the counter electrodes, the photovoltaic parameters are $V_{OC}$ = 0.69 V, $J_{SC}$ = 5.69 mA/$cm^2$, FF = 0.32, and $\eta$ = 0.53 %. The ITO/CNT nano composites showed the possibility for the counter electrode applications of DSSCs.