• Title/Summary/Keyword: duty cycle control

Search Result 225, Processing Time 0.031 seconds

A New Direct Torque Control Scheme of an Induction Motor Using Duty Ratio Modulation

  • Park, Jeong-Woo;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1223-1231
    • /
    • 2018
  • The direct torque control (DTC) scheme features a simple structure thanks to stator flux-oriented control. It has the advantage of robustness against motor parameters variation since only the stator resistance is involved in the control scheme. On the other hand, the disadvantage of DTC is large torque ripple. To reduce the torque ripple, many studies on DTC-space vector modulation (DTC-SVM) schemes, which modulate the duty ratio with a fixed switching cycle, have been proposed. However, there is the difficulty in obtaining the duty ratio for DTC-SVM. Hence, this paper proposes a new duty ratio selection and stator flux calculation methods for reducing torque ripple. Simulations and experiments were carried out to determine the validity of the proposed method. The proposed scheme has simplified the duty ratio command and achieved the same control performance as the conventional duty ratio modulation method without using the information of motor parameters.

Low-area Duty Cycle Correction Circuit for Voltage-Controlled Ring Oscillator (전압제어 링 발진기용 저-면적 듀티 사이클 보정 회로)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.103-107
    • /
    • 2019
  • Recently, many technologies have been developed to realize low power high speed digital data communication and one of them is related to duty cycle correction. In this paper, a low-area duty cycle correction circuit for a voltage-controlled ring generator is proposed. The duty cycle correction circuit is a circuit that corrects the duty cycle using a 180 degree phase difference of a voltage controlled ring oscillator. The proposed low-area duty cycle circuit changes a conventional flip-flop to a true single phase clocking (TSPC) flip-flop And a low-area high-performance circuit is realized. By using TSPC flip-flop instead of general flip-flop, it is possible to realize low-area circuit compared to existing circuit, and it is expected to be used for high-performance circuit for low-power because it is easy to operate at high speed.

Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN (IEEE 802.15.4 저속 WPAN에서 듀티 사이클과 비콘 추적의 통합 제어)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • Since most of devices in the IEEE 802.15.4 LR-WPAN are expected to operate on batteries, they must be designed to consume energy in a very conservative way. Two energy conservation algorithms are proposed for the LR-WPAN: DDC (Dynamic Duty Cycle) and DBT (Dynamic Beacon Tracking). The DDC algorithm adjusts duty cycle dynamically depending on channel conditions. The DBT algorithm switches beacon tracking mode on and off adaptively depending on traffic conditions. Combining the two algorithms reduces energy consumption more efficiently for a wide range of input loads, while maintaining frame delivery ratio and average delay at satisfactory levels.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Limit Cycle Analysis Of Attitude Control System Using Thruster Under Time Delay Effect (시간지연을 갖는 추력기 자세제어시스템의 Limit Cycle 분석)

  • 안재명;노웅래;정호락;최형돈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.3-3
    • /
    • 2000
  • Limit cycle analysis of attitude control system using gas jet thrusters is performed. Schmitt-Trigger and PD control laws are applied and solenoid valve time delay is considered. Phase plane method is used for calculation of characteristics of limit cycle. Important characteristics of resultant limit cycle such as frequency, amplitude, maximum rate, and duty ratio could be expressed analytically by proposed method.

  • PDF

Design and implementation of thyristor chopper circuit for D.C series motor control (직류 직권 전동기 제어를 위한 싸이리스터 쵸퍼회러의 설계및 시작)

  • 이윤종;백수현;이성백
    • 전기의세계
    • /
    • v.28 no.9
    • /
    • pp.51-59
    • /
    • 1979
  • The forming and design method of D.C thyristor chopper circuit for DC Series motor control is suggested, ard the computation method of thyristor commutaing element's, value which makes it all the more important, is possible. Also the trigger circuit was dealt with. In this paper, in order to control the duty cycle, the duty time is kept on constancy and variable chopping frequency was adopted. By above mentioned circuit design method, the D.C thyristor chopper circuit was implemented and tested. In this circuit, the result of D.C motor control was good and reliable. The relation between the $K_{d}$ and the ratio of input-output current, or the characteristic of speed was varied lineary at the range 0.1 ~ 0.9 of duty cycle. This confirms the fact that D.C to D.C power conversion which is the merit of chopper control is operated most likely a transformer.ormer.

  • PDF

Precise Temperature Control by Adjusting Flow of Liquid Nitrogen (액체 질소의 흐름 조절을 통한 저온 정밀 온도 제어)

  • Yang, Inseok;Lee, Jee-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2016
  • We devised a method to control the temperature of a liquid bath as low as $-100^{\circ}C$ using the duty cycle control of a solenoid valve. The solenoid valve controls the flow of liquid nitrogen that we used as a cryogen in this system. By controlling the duty cycle of a solenoid valve using feedback from the measured temperature of the liquid bath, we were able to achieve temperature stability within ${\pm}19mK$ around $-100^{\circ}C$. We also demonstrated that by taking average values of the temperature readings for sequence of measurements from more than one thermometer, it is possible to use this system for the calibration of thermometers within 3 mK. This system and the control method can be used for the precise temperature control in the range between $0^{\circ}C$ and $-100^{\circ}C$, where commercially available precision baths are much expensive and hard to be built in customized configurations.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

A Burst-Mode Limiting Amplifier with fast ATC Function (고속 ATC 기능을 갖는 버스트-모드 제한 증폭기)

  • Ki, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, we invented a new structure of fast ATC(Automatic Threshold Control) circuit. Using the structure we made a new burst-mode limiting amplifier with fast ATC function using commercial $0.8{\mu}m$ BiCMOS technology. It's ATC function worked so fast that even the first bit of burst-data could be detected, which confirmed that the new structure was useful for fast ATC. However, in the beginning of a burst, distortions in duty-cycle occurred and increased up to 59% of duty-cycle as amplitude of input signal increased. But we confirmed that after 10 cycles passed, duty-cycles was staying below 52% of duty-cycle for any magnitude of input signal.

The Buck DC-DC Converter with Non-Linear Instantaneous Following PWM Control Method (비선형 순시추종형 PWM 제어기법을 적용한 강압형 DC-DC 컨버터)

  • Kim Sang-Don;Ra Byung-Hun;Lee Hyun-Woo;Kim Kwang-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.470-475
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of do-dc converter. In this control method, the duty ratio of a switch is exactly equal In or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with buck converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM

  • PDF