• 제목/요약/키워드: dusts exposure

Search Result 40, Processing Time 0.02 seconds

Distribution of brominated flame retardants and phthalate esters in house dust in Korea

  • Kweon, Deok-Jun;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.354-363
    • /
    • 2018
  • We examined the levels of brominated flame-retardants (BFRs) including polybrominateddiphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), and phthalates in indoor dusts in residential houses in Korea, and their distribution patterns depending on building characteristics. Mean concentrations of phthalate esters ($1,825{\mu}g\;g^{-1}$) were significantly higher than that of BFRs (PBDE: $1,332ng\;g^{-1}$, HBCDs: $459ng\;g^{-1}$, and TBBPA: $213ng\;g^{-1}$), indicating more frequent use of phthalate-containing products such as PVC flooring in the Korean houses. PVC flooring house was associated with higher concentrations of DEHP (p = 0.001) and BBP (p = 0.012), indicating that exposure to phthalate was higher in the PVC flooring house. Building age was significantly related with levels of PBDEs especially BDE-47 (p = 0.062), BDE-203 (p = 0.007), DEHP (p = 0.004), and BBP (p = 0.070), respectively, indicating that older buildings can produce higher amounts of PBDEs and phthalates. Our study can provide important information on the sources of BFRs and phthalates in residential houses in Korea.

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part 2 - Ceramics, Stone, Concrete, Glass and Briquets, etc. (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형유리규산 농도의 분석 제2부 : 요업, 석재, 콘크리트, 유리, 연탄 및 기타사업장)

  • Kim, Hyunwook;Phee, Young Gyu;Roh, Young Man;Won, Jeoung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.99-111
    • /
    • 1999
  • The purpose of this study was to evaluate crystalline silica contents in airborne respirable dusts from various manufacturing industries and to compare analytical ability of two different methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy(FTIR). Various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: ceramics, brick, concrete, and abrasive material etc. The personal respirable dust samples were collected using l0mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size. polyvinylchloride (PVC) filters as collection media. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 7500, and 7602 for dust collection and quartz analysis. A total of 48 samples were collected from these industries. Initial analyses of these samples showed log-normal distributions for dust and quartz concentrations. Some results from ceramics and stone exceeded current Korean Occupational Exposure Limits. The average concentrations of personal respirable dust by cyclone were 0.43, 0.24, 0.26, 0.42, 0.53 and $0.29mg/m^3$ in ceramics, stone, concrete, glass, briquets, and others, respectively. A comparison of performance of two analytical methods for quantifying crystalline silica was performed using data from ceramics. The results showed that no significant difference was found between two methods for ceramics. The mean crystalline silica contents determined by XRD were 3.41 % of samples from briquets and 7.18 % from ceramics and were 2.58 % from concrete and 10.33 % from ceramics by FTIR. For crystalline silica analysis, two analytical techniques were highly correlated with $r^2=0.81$ from ceramics. Both cristobalite and tridymite were not detected by XRD and FTIR.

  • PDF

Findings on Chest Low-Dose CT Images of Group Exposed to Inorganic Dusts (분진에 노출되었던 집단의 흉부 저선량 CT영상 소견)

  • Lee, Won-Jeong;Seon, Jong-Ryul;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.305-314
    • /
    • 2011
  • The purpose of this study was to compare the findings on the chest low-dose CT (LDCT) images between the negative and positive groups for pneumoconiosis in the group exposed to inorganic dust. From May 30, 2007 to August 31, 2008, total 328 subjects were examined by a LDCT. LDCT images were read by a chest radiologist who has much experience for reading of pneumoconiosis. All subjects were classified into two groups based on digital images after consensus reading of two radiologists according to the ILO 2000 guidelines; negative group (87, 26.5%) without pneumoconiosis and positive group (241, 73.5%). Statistical analysis was performed using a SPSS 14.0. There were significant differences in age (60.9 vs. 65.0, p<0.001), and in dust expose duration (17.0 vs. 19.2, p=0.024) between two groups, but no significant difference in smoking (p=0.784). Of the 328 subjects, 13 diagnosis were extracted from 245 subjects (74.7%). Coronary artery calcification (CAC) was significantly higher in positive group than that in negative group (36.9% vs. 25.3%, p=0.049). Honeycombing showed higher frequency in positive group than in negative group (6.2% vs. 1.2%, p=0.079). Pneumoconiosis findings caused by inorganic dusts exposure showed the significant relation with CAC on LDCT images. Future studies need to prove that pneumoconiosis finding is independent risk factor for CAC using a coronary artery angiography.

Evaluation of Exposure Characteristics of Fine Dusts by Subway Lines (지하철역사의 호선별로 미세먼지의 노출특성에 대한 평가)

  • Hwang, Sung Ho;Kim, Jeong Oh
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • Objectives: This study aimed to assess the environmental factors that affect particulate matters (PM10) and to compare with outdoor PM10 concentrations in an underground subway stations. Methods: The PM10 level was determined from May 2013 to September 2013 in the Seoul subway stations in four lines. PM mini-vol portable sampler sampler was used to collect PM10 for 6 hrs. Arithmetic means of PM10 concentrations with standard deviation (SD) were calculated. Paired t-test was used to compare the differences between indoor PM10 and outdoor PM10 concentrations with correlation analysis which was used to identify the association between indoor PM10 concentrations and environmental factors. Results: There were no different PM10 concentrations significantly between line 1, 2, 3 and 4 in an underground subway stations. Passenger number was positively associated with PM10 concentration while construction year was negatively associated with PM10 concentrations. Indoor PM10 concentrations were significantly higher than those in outdoor PM10 concentrations. PM10 concentrations were higher in the stations which were constructed before 1990s rather than the stations constructed after 1990s. Conclusion: PM10 levels in the underground subway stations varied greatly depending on the construction year. Therefore, it might need to be more careful management to the stations which constructed in before 1990s.

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(III) - Contribution and distribution characteristics of air pollutants according to elemental carbon, crystalline silica, and stable isotope ratio - (대구 안심연료단지 환경오염물질 노출 평가(III) - 원소 탄소, 결정형 실리카 및 안정동위원소비를 이용한 오염원 기여율 및 분포특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Shon, Byung-Hyun;Bae, Hye-Jeong;Yang, Won-Ho;Kim, Ji-Young;Kim, Geun-Bae;Choi, Jong-Woo;Park, Sung-Jun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.392-404
    • /
    • 2015
  • Objectives: This study measured and analyzed the concentrations of crystalline silica, elemental carbon and the contribution ratio of pollutants which influence environmental and respiratory disease around the Ansim Briquette Fuel Complex in Daegu, Korea. Methods: We analyzed the crystalline silica and elemental carbon in the air according to FTIR(Fourier Transform Infrared Spectroscopy) and NIOSH(National Institute of Occupation Safety and Health) method 5040, respectively. In addition, lead stable isotopes, and carbon and nitrogen stable isotopes were analyzed using MC-ICP/MS(Multi Collector-Inductively Coupled Plasma/Mass Spectrometer), and IRMS(Isotope Ratio Mass Spectrometer), respectively. Results: The concentration of crystalline silica in the direct exposure area around the Ansim Briquette Fuel Complex was found to be $0.0014{\pm}0.0005mg/Sm^3$, but not to exceed the exposure standards of the ACGIH(American Conference of Governmental Industrial Hygienists). In the case of the autumn, the direct exposure area was found to show a level 2.5 times higher than the reference area, and on the whole, the direct exposure area was found to have a level 1.4 times higher than the reference area. The concentration of elemental carbon in the direct exposure area and in the reference area were found to be $0.0014{\pm}0.0006mg/Sm^3$, and $0.0006{\pm}0.0003mg/Sm^3$, respectively. This study confirmed the contribution ratio of coal raw materials to residentially deposited dusts in the area within 500 meters from the Ansim Briquette Fuel Complex and the surrounding area with a stable isotope ratio of 24.0%(0.7-62.7%) on average in the case of carbon and nitrogen, and 33.9%(26.6-54.1%) on average in the case of lead stable isotopes. Conclusions: This study was able to confirm correlations with coal raw materials used by the Ansim Briquette Fuel Complex and the surrounding area. The concentration of some pollutants, crystalline silica, and elemental carbon emitted to the direct-influence area around the Ansim Briquette Fuel Complex were relatively higher than in the reference area. Therefore, we need to impose continuous and substantive reduction countermeasures in the future to prevent particulate matter and coal raw materials in the study area. It is time for the local government and authorities to prepare active administrative methods such as the relocation of Ansim Briquette Fuel Complex.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) via Public Facilities PM2.5, Korea (II)

  • Kim, Ho-Hyun;Lee, Geon-Woo;Yang, Ji-Yeon;Jeon, Jun-Min;Lee, Woo-Seok;Lim, Jung-Yun;Lee, Han-Seul;Gwak, Yoon-Kyung;Shin, Dong-Chun;Lim, Young-Wook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2014
  • The purpose of the study is to evaluate the pollution level (gaseous and particle phase) in the public facilities for the PAHs, non-regulated materials, forecast the risk level by the health risk assessment (HRA) and propose the guideline level. PAH assessments through sampling of particulate matter of diameter < 2.5 ${\mu}m$ ($PM_{2.5}$). The user and worker exposure scenario for the PAHs consists of 24-hour exposure scenario (WIES) assuming the worst case and the normal exposure scenario (MIES) based on the survey. This study investigated 20 PAH substances selected out of 32 substances known to be carcinogenic or potentially carcinogenic. The risk assessment applies major toxic equivalency factor (TEF) proposed from existing studies and estaimates individual Excess Cancer Risk (ECR). The study assesses the fine dusts ($PM_{2.5}$) and the exposure levels of the gaseous and particle PAH materials for 6 spots in each 8 facility, e.g. underground subway stations, child-care facilities, elderly care facilities, super market, indoor parking lot, terminal waiting room, internet caf$\acute{e}$ (PC-rooms), movie theater. For internet caf$\acute{e}$ (PC-rooms) in particular, that marks the highest $PM_{2.5}$ concentration and the average concentration of 10 spots (2 spots for each cafe) is 73.3 ${\mu}g/m^3$ (range: 6.8-185.2 ${\mu}g/m^3$). The high level of $PM_{2.5}$ seen in internet cafes was likely due to indoor smoking in most cases. For the gaseous PAHs, the detection frequency for 4-5 rings shows high and the elements with 6 rings shows low frequency. For the particle PAHs, the detection frequency for 2-3 rings shows low and the elements with 6 rings show high frequency. As a result, it is investigated that the most important PAHs are the naphthalene, acenaphthene and phenanthrene from the study of Kim et al. (2013) and this annual study. The health risk assessment demonstrates that each facility shows the level of $10^{-6}-10^{-4}$. Considering standards and local source of pollution levels, it is judged that the management standard of the benzo (a)pyrene, one of the PAHs, shall be managed with the range of 0.5-1.2 $ng/m^3$. Smoking and ventilation were considered as the most important PAHs exposure associated with public facility $PM_{2.5}$. This study only estimated for inhalation health risk of PAHs and focused on the associated cancer risk, while multiple measurements would be necessary for public health and policy.

A Study on Worker Exposure to Chromium and Degreasing Solvent at Eleetroplating Operation in Small Industry in Korea (우리나라 중소기업 도금공정 근로자의 크롬 및 세척제 폭로에 관한 연구)

  • Paik, Nam Won;Zong, Moon Shik;Lee, Hong Keun;Yun, Chung Ski;Ceong, Hoe Kyeong;Lee, Kyeong Hee;Lee, Na Roo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.110-126
    • /
    • 1993
  • Worker exposures to total chromium, hexavalent chromium (VI), sulfuric acid and alkaline dust at electroplating operations and worker exposures to trichloroethylene (TCE) and methyl chloroform (MCM) at degreasing operations in eleven small industrial plants were evaluated. Appropriate local exhaust ventilation systems for both operations were designed and recommended. Results of the study are summarized as follows ; 1. Out of 134 measurements for airborne hexavalent chromium concentrations, seven were exceeding the Korean occupational health standard of $50{\mu}g/m^3$ and 45 were exceeding the NIOSH standard of $1{\mu}g/m^3$. With an exception of one measurement, concentrations of total chromium were below the Korean standard of $500{\mu}g/m^3$. 2. Worker exposures to chromium were closely related to the existing control methods at the electroplating operations. Local exhaust systems, partial coverage of the tank surface, and antifoaming agents on liquid surface were adopted as control methods. 3. With an exception of one sample, airborne concentrations of sulfuric acid and alkaline dusts were below the applicable occupational heatlth standards. 4. Three plants indicated that airborne concentrations of TCE and MCM were exceeding the Korean standards. Other plants showed lower concentrations than the standards. It should be noted that generally, the activities and workloads on the day of surveys were less than normal. 5. Since the most existing ventilation systems did not satisfy the ACGIH criteria, the ventilation systems should be improved. Some examples for designing appropriate ventilation systems are presented.

  • PDF

A Study on the Status of Work Environment in the Manufacturing with Less Than Five Workers in Gimhae Area (김해지역 5인 미만 제조업 사업장의 작업환경실태)

  • Lee, Kyung-Yeul;Moon, Deog-Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.131-144
    • /
    • 2006
  • For the purpose of preparing the fundamental data on working environment of small scale manufacturing industries and preventing the occupational diseases of workers in these industries, authors surveyed the status of working environment to several chemical substances and physical agents by types of industry and types of process in the small scale manufacturing industries with less than five workers in Gimhae including 235 workplaces, 14 types of industry and 25 types of process from January 2002 to December 2004. This measurement method was work environment measurement method (established in Ministry of Labor, Korea), analytical methods (2nd Ed.) of Occupational Safety and Health Administration (OSHA) and manual of analytical methods (4th Ed.) of National Institute for Occupational Safety and Health (NIOSH) and collected data was analyzed by using SPSS 10.0 for windows, the results were as follows: 1. Noise generated in 14 types of industry and 22 types of process. an actual level of mean exposure (90.7 dB(A)) exceeded threshold limit values (TLVs) in manufacture of other transport equipment. An actual level of mean exposure (90.2dB) exceeded TLVs in the process of wire-drawing and 90.4dB in the process of wire-stranding. 2. Dusts of type I, II, III were generated in 9 types of industry and 8 types of process. Its mean concentration did not exceed TLVs. 3. Heavy metals (Pb, Mn, Cr, Ni) were generated in 7 types of industry and 7 types of process. Its mean concentration did not exceed TLVs. 4. 16 kinds of organic solvents were generated in 11 types of industry and 6 types of process. Its mean concentration did not exceed TLVs. As the above results, chemical substances and physical agents were generated in the several different types of industry and process of the manufacturing industry with less than five workers, and only mean level of noise was exceeded TLVs. In case of exceeding threshold limit values, improvement of work environment is actively needed, and work environment management should be performed continuously for prevention of an occupational diseases and work related diseases.

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

Global Estimates on Biological Risks at Work

  • Jukka Takala;Alexis Descatha;A. Oppliger;H. Hamzaoui;Catherine Brakenhielm;Subas Neupane
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.390-397
    • /
    • 2023
  • Introduction: Biological risks are a major global problem in the workplace. The recent COVID-19 pandemic has highlighted the need for a more comprehensive understanding of the biological risks at work. This study presents data on both communicable infectious biological agents and noncommunicable factors leading to death and disability for the year 2021. Methods: We followed the methodology established by the International Labour Organization (ILO) in their past global estimates on occupational accidents and work-related diseases. We used relevant ILO estimates for hazardous substances and related population attributable fractions derived from literature, which were then applied to World Health Organization mortality data. The communicable diseases included in the estimates were tuberculosis, pneumococcal diseases, malaria, diarrheal diseases, other infectious diseases, neglected tropical diseases, influenza associated respiratory diseases and COVID-19. Noncommunicable diseases and injuries considered were Chronic Obstructive Diseases (COPD) due to organic dusts, asthma, allergic reactions and risks related to animal contact. We estimated death attributable to biological risk at work and disability in terms of disability adjusted life years (DALYs). Results: We estimated that in 2022, 550,819 deaths were caused by biological risk factors, with 476,000 deaths attributed to communicable infectious diseases and 74,000 deaths caused by noncommunicable factors. Among these, there were 223,650 deaths attributed to COVID-19 at work. We calculated the rate of 584 DALYs per 100,000 workers, representing an 11% increase from the previous estimate of the global burden of work-related disabilities measured by DALYs. Conclusion: This is a first update since previous 2007 ILO estimates, which has now increased by 74% and covers most biological risks factors. However, it is important to note that there may be other diseases and deaths are missing from the data, which need to be included when new information becomes available. It is also worth mentioning that while deaths caused by major communicable diseases including COVID-19 are relatively rare within the working population, absences from work due to these diseases are likely to be very common within the active workforce.