• Title/Summary/Keyword: dust vacuum efficiency

Search Result 12, Processing Time 0.023 seconds

Optimal Design of Vacuum Cleaner with a Multi Cyclone (멀티사이클론을 이용한 진공청소기의 최적설계에 관한 연구)

  • Ha, Gun-Ho;Kim, Eung-Dal;Yang, Byung-Sun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • Cyclone, a type of particle collector widely used in the field of ambient sampling and industrial particulate control, is the principal type of gas-solids separator that uses a centrifugal force. The goal of this study is to design and evaluate the cyclone that can be used for the household vacuum cleaners. A multi cyclone with a 1st cyclone and several 2nd cyclones is designed to improve dust collection efficiency. The dust collection efficiency and the suction power of 1st cyclone are evaluated. And the dust collection efficiency and the suction power of multi cyclone are evaluated according to various sizes of inlet and vortex finder. As a result, a cone shape porous filter has better dust collection efficiency than a cylinder shape porous filter. The dust collection efficiency of a multi cyclone is 3.5% greater than that of a single cyclone.

Development of the Dual Cyclone System for a High Efficient Vacuum Cleaner (사이클론 집진 원리를 적용한 진공청소기 개발에 관한 연구)

  • Lee, Jae-Keun;Lee, Jung-Eun;Kim, Seong-Chan;Cho, Min-Chul;Hyun, Choong-Nam;Kwack, Dong-Jin;Lim, Kyung-Suk;Lee, Sung-Hwa;Yang, Byung-Sun;Ji, Heon-Pyung;Jeong, Hoi-Kil;Park, Deog-Bae;Liu, Benjamin Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.644-649
    • /
    • 2000
  • A new cyclone system for the vacuum cleaner to collect dusts has been studied experimentally and numerically to meet the constant suction power, hygienic exhaust and a reduction of maintenance cost. The cyclone system of the vacuum cleaner consists of twin cyclones for improving dust collection efficiency. The first. cyclone catches large dust particles and the second one having two separated flows to decrease pressure drop collects small dust particles. The optimal design factors such as dust collection efficiency, pressure drop, and cut-size are investigated from the experimental results by the Taguchi method. Cyclone cleaner systems designed in this study has a good Performance taking into account the dust collection efficiency of 93% and the cut-size of $1.6{\mu}m$ in mass median diameter at the flow rate of 1 CMM. The cyclone vacuum cleaner showed the potential to be an effective method to collect dusts generated in the household.

  • PDF

An experimental study on the development and verification of NCC(new concrete cutting) system

  • Park, Jong-Hyup;Han, Jong-Wook
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.203-211
    • /
    • 2018
  • This paper introduces the development process of NCC(New Concrete Cutting) system and analyzes first verification test. Based on the first verification test results, some problems of NCC system have been newly modified. We carry out the second verification test. We tried to verify cutting performance and dust control efficiency of NCC system through the cutting test of concrete bridge piers. In particular, this verification test strives to solve the problem of concrete dust, which is the biggest problem of dry cutting method. The remaining dust problems in cutting section tried to solve through this verification test. This verification test of the NCC system shows that the dust problem of dry cutting method is closely controlled and solved. In conclusion, the proposed NCC method is superior to the dry cutting method in all aspects, including cutting performance, dust vacuum efficiency and cooling effect. The proposed NCC system is believed to be able to provide eco-friendly cutting technology to various industries, such as the removal of the SOC structures and the dismantling of nuclear plants, which have recently become a hot issue in the field of concrete cutting.

Flow Field Analysis inside Intake Nozzles of a Household Vacuum Cleaner

  • Daichin Daichin;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.733-736
    • /
    • 2002
  • The inside configuration of intake nozzle of vacuum cleaner greatly affects the dust-collection efficiency and acoustic-noise effect generated from flow separation Interaction between high-speed flow and internal structure. In order to improve the performance of the vacuum cleaner, flow fields inside the intake nozzles were investigated using flow visualization and FIV (Particle Image Vetocimetry) technique. The measurement to aerodynamic power, suction efficiency and noise level were also carried out. Valuable information was obtained from the experiments, revealing how to modify the intake nozzle. In this paper, the results of visualization, velocity distribution of flow fields, aerodynamic power, suction efficiency and noise level are discussed.

  • PDF

Noise Reduction Method and Sources of Cyclone Sound for Vacuum Cleaner (청소기용 Cyclone 소음원 및 저감방법)

  • Lee, Jun-Hwa;Hong, Seung-Gee;Joo, Jae-Man;Oh, Sang-Kyoung;Song, Hwa-gyu;Oh, Jang-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.452-456
    • /
    • 2005
  • Cyclone is widely adopted in the vacuum cleaner, because of the simple structure, the high dust collection efficiency and its transparency feature, which can be shown to the customer. At past times, cyclone performance was represented by collection efficiency, flow rate, pressure drop etc. At recent times the noise problem is getting important as cyclone comes into home-appliances. In this paper, pressure drop of cyclone and it's noise were measured at the variation of the cyclone structure and the main sources of cyclone peak noise was found by experimental and numerical analysis. In addition, the structure for peak noise reduction was suggested and it is beneficial both pressure drop and noise reduction.

Noise Reduction Method and Sources of Cyclone for Vacuum Cleaner (청소기용 Cyclone 소음원 및 저감방법)

  • Lee, Jun-Hwa;Hong, Seung-Gee;Joo, Jae-Man;Oh, Sang-Kyong;Song, Hwa-Gyu;Oh, Jang-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.89-92
    • /
    • 2004
  • Cyclone is widely apoted in the vacuum cleaner, because of it's simple structure, the dust collection efficiency is high and its transparency feaure which can be shown to the customer. At past times, cyclone performance is represented by collection efficiency, flow rate, pressure drop etc. At recent times the noise problem is getting important as cyclone comes into home-appliances. In this paper, cyclone's pressure drop and noise is measured at the variation of the cyclone structure and the main sources of cyclone peak noise is found by experiments and numerical analysis. In addition, the structure for peak noise reduction is suggested and it is beneficial both pressure drop and noise reduction.

  • PDF

Study on Chemical Removal of Nitric Oxide (NO) as a Main Cause of Fine Dust (Air Pollution) and Acid Rain

  • Seo, Hyeon Jin;Jeong, Rak Hyun;Boo, Jang-Heon;Song, Jimin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.218-222
    • /
    • 2017
  • This study was conducted to remove $NO_x$, which is the main cause of fine dust and air pollution as well as acid rain. $NO_x$ was tested using 3% NO (diluted in He) as a simulated gas. Experiments were sequentially carried out by oxidizing NO to $NO_2$ and absorbing $NO_2$. Especially, we focused on the changes of NO oxidation according to both oxidant ($NaClO_2$) concentration change (1~10 M) and oxidant pH change (pH = 1~5) by adding HCl. In addition, we tried to suggest a method to improve $NO_2$ absorption by conducting $NO_2$ reduction reaction with reducing agent (NaOH) concentration (40~60%). It was found that NO removal efficiency increased as both concentration of oxidant and flow rate of NO gas increased, and NO decreased more effectively as the pH of hydrochloric acid added to the oxidant was lower. The $NO_2$ adsorption was also better with increasing NaOH concentration, but the NO removal efficiency was ~20% lower than that of the selective NO reduction. Indeed, this experimental method is expected to be a new method that can be applied to the capture and removal of fine dust caused by air pollution because it is a method that can easily remove NO gas by a simple device without expensive giant equipment.

Development of Robotic Vacuum Sweeping Machine (로봇형 진공식 연마머신 기술개발)

  • Cho, Young-Ha;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.769-772
    • /
    • 2011
  • We propose a sweeping machine is equipped with a polyester filter to retain small particles of dust. The filter is washable and can be easily removed for maintenance purpose or eventual replacement. Research continues into key areas such as making the structure of machine as ship' s floor grinder as possible, and designing algorithms and systems for efficiency-related system technologies.

  • PDF

Production of high dissolved O2/O3 with rotating wheel entraining gas method for environmental application

  • Li, Haitao;Xie, Bo;Hui, Mizhou
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • There is a significant demand to make various dissolved gases in water. However, the conventional aeration method shows low gas mass transfer rate and gas utilization efficiency. In this study, a novel rotating wheel entraining gas method was developed for making high dissolved $O_2$ and $O_3$ in water. It produced higher concentration and higher transfer rate of dissolved $O_2$ and $O_3$ than conventional bubble aeration method, especially almost 100% of gas transfer efficiency was achieved for $O_3$ in enclosed reactor. For application of rotating wheel entraining gas method, aerobic bio-reactor and membrane bio-reactor (MBR) were successfully used for treatment of domestic and pharmaceutical wastewater, respectively; and vacuum ultraviolet $(VUV)/UV+O_3/O_2$ reactors were well used for sterilization in air/water, removal of dust particles and toxic gases in air, and degradation of pesticide residue and sterilization on fruits and vegetables.

Effect of Biofilter on Reducing Malodor Emission (악취 발산감소를 위한 필터의 이용 효과)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF