• Title/Summary/Keyword: during aging

Search Result 1,447, Processing Time 0.027 seconds

Isolation of Debaryomyces hansenii and selection of an optimal strain to improve the quality of low-grade beef rump (middle gluteal) during dry aging

  • Yoonjeong Yoo;Hyemin Oh;Yohan Yoon
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1426-1434
    • /
    • 2023
  • Objective: The objective of this study was to evaluate the effect of Debaryomyces hansenii isolated from dry-aged beef on the tenderness and flavor attributes of low-grade beef during dry aging. Methods: Five D. hansenii strains were isolated from dry-aged beef samples. The rump of low-grade beef was inoculated with individual D. hansenii isolates and subjected to dry aging for 4 weeks at 5℃ and 75% relative humidity. Microbial contamination levels, meat quality attributes, and flavor attributes in the dry-aged beef were measured. Results: Of the five isolates, the shear force of dry-aged beef inoculated with SMFM201812-3 and SMFM201905-5 was lower than that of control samples. Meanwhile, all five isolates increased the total free amino acid, glutamic acid, serine, glycine, alanine, and leucine contents in dry-aged beef. In particular, the total fatty acid, palmitic acid, and oleic acid contents in samples inoculated with D. hansenii SMFM201905-5 were higher than those in control samples. Conclusion: These results indicate that D. hansenii SMFM201905-5 might be used to improve the quality of beef during dry aging.

Physico-chemical Changes of Commercial Ssamjang during Storage (공장식 쌈장의 저장기간에 따른 이화학적 성분변화)

  • Kim, Yong-Kook;Kim, Seong-Ju;Han, Min-Soo;Chang, Young-Il;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.389-396
    • /
    • 2005
  • Physico-chemical properties of ssamjang prepared by industrial process were investigated. Overall experiments were planned by central composite design for five independent variables, kochujang mash aging period $(X_{1})$, doenjang aging period $(X_{2})$, doenjang content $(X_{3})$, sterilization temperature $(X_{4})$, and storage temperature $(X_{5})$. Storage period had no consistent effect on moisture content of ssamjang. Doenjang having longer aging period showed lower moisture content than that having shorter aging period. Titratable acidity and pH of ssamjang gradually increased and decreased with storage period, respectively, with pH of ssamjang significantly affected by aging period of doenjang and kochujang mashes, and sterilization and storage temperatures. Amino nitrogen contents of ssamjang increased during storage and were more affected by sterilization temperature than by aging period and content of doenjang, and storage temperature. Crude protein content of ssamjang irregularly changed during storage, and was slightly affected by content of doenjang.

Rapid Discoloration of Aged Beef Muscles after Short-Term/Extreme Temperature Abuse during Retail Display

  • Kim, Hyun-Wook;Setyabrata, Derico;Choi, Yun-Sang;Kim, Yuan H. Brad
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • The objective of this study was to evaluate the effects of a short-term/extreme temperature abuse (STA) on color characteristics and oxidative stability of aged beef muscles during simulated retail display. Two beef muscles (longissimus lumborum, LL and semitendinosus, ST) were aged for 7 (A7), 14 (A14), 21 (A21), and 28 d (A28), and further displayed at 2℃ for 7 d. The STA was induced by placing steak samples at 20℃ for 1 h on the 4th d of display. Instrumental and visual color evaluations, ferric ion reducing capacity (FRC) and 2-thiobarbituric acid reactive substances (TBARS) assay were performed. Initially, redness, yellowness and hue angle of all beef muscles were similar, regardless of aging time before display (p>0.05). An increase in postmortem aging time increased lipid oxidation and caused a rapid discoloration after STA during display (p<0.05). ST muscle was more sharply discolored and oxidized after STA, when compared to LL muscle (p<0.05). The FRC value of beef muscles was decreased after 7 d of display (p<0.05). The results from the current study indicate adverse impacts of postmortem aging on color and oxidative stabilities of beef muscles, particularly under temperature abusing conditions during retail display. Thus, developing a specific post-harvest strategy to control quality attributes in retail levels for different muscle types and aging conditions would be required.

REACTION OF PAPER PULP AND ALKYL KETENE DIMER BY AGING TREATMENT DURING PAPERMAKIN PROCESS

  • Shin, Young-Doo;Seo, Won-Sung;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.83-83
    • /
    • 2000
  • Alkylketene dimer was known as a cellulose reactive or alkaline size because it does not require to fix to the fiber as do the traditional rosin sizes. A proposed sizing mechanism of AKD was the formation of P -ketoester bond between AKD and cellulose which provides the permanent attachment and the orientation of the hydrophobic alkylchains outward. However, some questions about the reaction had arisen and thus, the sizing mechanism of AKD has been a subject of controversy for several decades. The major concern of the controversy is that AKD is really reactive with cellulose or not in the papermaking conditions. In this study, reaction between AKD and pulp fiber was investigated, in order to find out whether AKD forms P-ketoester with pulp fiber during aging under no catalyzed neutral condition with obvious spectroscopic evidence. In addition, effect of aging treatment on the sizing development was studied. It has been disclosed that, in absence of water, AKD reacted with cellulose to form P -ketoester linkage under no catalyzed neutral condition, while, in presence of water, most of AKD was hydrolyzed to a dialkyl ketone or P -ketoacid. In addition, during the aging treatment of AKD-sized paper, its typical IR spectra bands gradually were reduced, completely disappeared after 6hr aging, and formed new absorption bands at 1707cm-' and shoulder peak at 1700cm-' which refer to the typical dialkylketone absorption bands. Therefore, the formation of P -ketoester between AKD and pulp fiber is impossible in the practical papermaking process. It could be suggested that the sizing development of AKD-sized paper is obtained by next two mechanism: 1) formation of a thin-layer of AKD on the fiber surface through melting and spreading of AKD emulsion particles by heat and 2) the hydrolysis of AKD to dialkyl ketone which has higher melting point, during drying and storage of AKD sized papers.

  • PDF

Properties of a Thermosetting Epoxy Composite : Effect of Isothermal Physical Aging (에폭시 열경화 복차재료의 성질 : 등온물리시효의 효과)

  • 이종근;윤성호
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2001
  • Isothermal physical aging of a glass fiber/epoxy composite was examined at different aging temperatures ($T_a$) and degrees of conversion (monitored by the glass transition temperature, $T_g$) by means of the TBA torsion pendulum technique. The range of aging temperature was from 10 to $130^{\circ}C$ : the conversion was systematically changed from $T_g$=$76^{\circ}C$ to $T_g$=$177^{\circ}C$ (fully crosslinked). The effect of isothermal physical aging was manifested as perturbations of the modulus and mechanical loss vs. temperature in the vicinity of $T_a$ for all conversions. The rate of isothermal physical aging determined from the change of modulus with aging time at fixed aging temperature decreased and then increased with increasing conversion below T$_{a}$=9$0^{\circ}C$. There exists a superposition in aging rate vs. ($T_g$ -$T_a$) by shifting horizontally and vertically. This implies that the physical aging process is independent of the change of chemical structure as conversion proceeds. It has been found that water absorbed at the aging temperature below $70^{\circ}C$ during isothermal physical aging lowers the apparent aging rate. It is due to the absorbed water molecules forming strong polar interactions with hydroxyl group on network chain and reducing the segmental mobility during the physical aging.g.

  • PDF

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

Evaluation of Nuclear Plant Cable Aging Through Condition Monitoring

  • Kim, Jong-Seog;Lee, Dong-Ju
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.475-484
    • /
    • 2004
  • Extending the lifetime of a nuclear power plant [(hereafter referred to simply as NPP)] is one of the most important concerns in the global nuclear industry. Cables are one of the long-life items that have not been considered for replacement during the design life of a NPP. To extend the cable life beyond the design life, it is first necessary to prove that the design life is too conservative compared with actual aging. Condition monitoring is useful means of evaluating the aging condition of cable. In order to simulate natural aging in a nuclear power plant. a study on accelerated aging must first be conducted. In this paper, evaluations of mechanical aging degradation for a neoprene cable jacket were performed after accelerated aging under tcontinuous and intermittent heating conditions. Contrary to general expectations, intermittent heating to the neoprene cable jacket showed low aging degradation, 50% break-elongation, and 60% indenter modulus, compared with continuous heating. With a plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of the cable jacket of neoprene can be extended much longer than extimated through the general EQ test. which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach that considers the actual environment conditions of the nuclear power plant is required for determining cable life.

Effects of high-pressure processing on taste-related ATP breakdown compounds and aroma volatiles in grass-fed beef during vacuum aging

  • Utama, Dicky Tri;Lee, Seung Gyu;Baek, Ki Ho;Jang, Aera;Pak, Jae In;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1336-1344
    • /
    • 2018
  • Objective: This study aimed to observe whether high-pressure processing (HPP) affected aroma development and the degradation rate of umami taste-related ATP breakdown products, specifically inosinic acid in grass-fed beef during vacuum aging. Methods: Strip loin (longissimus lumborum) cuts obtained from six grass-fed Friesian Holstein steers (32 months old) on day 4 post slaughter were vacuum-packed and subjected to pressurization at 300 and 500 MPa for 180 s at $15^{\circ}C{\pm}2^{\circ}C$. The samples were then stored for 4 weeks at $5^{\circ}C{\pm}0.5^{\circ}C$ under vacuum and compared with the control (0.1 MPa). Results: HPP increased the shear force value, promoted moisture loss and lipid oxidation, induced surface paleness, stabilized pH during aging, and reduced bacterial load and growth. The shear force value of 500 MPa-treated samples remained higher than the control after aging, while no significant differences were found between the control and 300 MPa-treated samples. Degradation of inosinic acid and inosine occurred during pressurization, resulting in an increase in hypoxanthine content. However, the degradation rate in HPP-treated samples during aging was slower; therefore, inosinic acid and inosine content remained higher than in control samples. No significant differences were found in hypoxanthine content at the end of aging. HPP intensified the levels of hexanal, octanal, 2-methylbutanal, 3-methylbutanal, benzaldehyde, and 2,5-dimethylpyrazine in cooked-aged beef samples. Conclusion: HPP induced aroma development and delayed the degradation of inosinic acid. However, it also reduced the postmortem tenderization rate.

Physiochemical Properties of Fernbraken Jangachi during Korean Traditional Pickling Process (숙성 기간 및 절임원에 따른 고사리장아찌의 이화학적 특성 변화)

  • Lee, In-Sook;Choi, Jin-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.4
    • /
    • pp.545-552
    • /
    • 2011
  • Fernbraken is a popular and well-known wild grass, but the physiochemical properties of Korean Traditional pickling (Jangachi) during aging have been little reported. Therefore, this study was carried out to investigate the physiochemical properties of Fernbraken Jangachi treated with a soybean sauce mixture for 6 weeks (1st pretreatment) as well as fermented with soybean paste, red hot pepper paste and soybean sauce for 7 weeks. Total polyphenol contents, acidity, salinity, sweetness (Brix), and ${\alpha}$-tocopherol of Fernbraken Jangachi all increased with aging period. On the other hand, pH and total acidity of Fernbraken Jangachi did not change much. Among the three kinds of Jangachies, Jangachi fermented with soybean sauce showed 2 fold higher salinity and total acidity levels compared to the others. Therefore, the physiochemical properties of Fernbraken Jangachi were dependent on the pickling properties, such as soybean paste, hot pepper paste or soybean sauce, and these properties maintained a certain level after 5~6 weeks of aging. Further, proper aging period for Fernbraken Jangachi was suggested as 10 weeks.

Effect of Humid Cycling Accelerated Aging on Deterioration of Duplicated Beeswax-Treated Volume (밀랍본 시제품의 습식 순환인공열화 특성분석)

  • Choi, Kyoung-Hwa;Park, Ji-Hee;Jeong, Hye-Young;Seo, Jin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.15-24
    • /
    • 2010
  • Many efforts to understand the deterioration processes of the beeswax-treated volume of "The Annals of Joseon Dynasty" have been made. However, most previous studies have focused on individual sample sheet of the beeswax-treated paper but not book volume format. In this study, humid cycling accelerated aging for duplicated beeswax-treated book volume and Hanji book volume were carried out to examine differences in the deterioration of different parts of each volume as well as between the two book volumes during the aging. As results, it is found that the deterioration rate for the beeswax-treated volume is higher than that for the Hanji book volume. Different parts in each volume show different magnitude of deterioration. In particular, outer sides in both beeswax-treated and Hanji book volumes, which are directly exposed to the air, are deteriorated more seriously than inner sides. It is also observed that inner sides are considerably deteriorated during the aging, implying that inner deterioration may have different mechanisms from outer deterioration.