• Title/Summary/Keyword: durability safety

Search Result 659, Processing Time 0.03 seconds

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Selection of Retaining Wall System for Underground Parking Lots Expansion of Apartments (거주중 공동주택의 지하주차장확대를 위한 흙막이공법 선정)

  • Ro, Young-Chang;Lee, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • Rapidly increasing automobile supply rate according to improved economic level of life makes lack of parking space of apartments. Even though the initial design of parking space compiled with old regulations, it may not observe either new laws or requirement of inhabitants. Even if old apartments have no structural durability problem, outworn facilities and insufficient parking area may be a main reason for reconstruction. It causes waste of national resources and makes recycling issues. Additionally, irregularly parked cars make traffic obstruction to a fire engine and result in many fire accident victims. Parking problems of apartments are not only inconvenience but also serious safety issues. From these points of view, remodeling only for parking area expansion is necessary to avoid overall reconstruction of apartments. The purpose of this study is to suggest a retaining wall selection method for apartments underground parking lots expansion without evacuation of resident people. Effect factors to select retaining wall system are analyzed and weight values are calculated by applying AHP. One selection method of retaining wall is proposed by evaluating applicability and its sensitivity analysis is executed. This selection method is expected to help decision-making of retaining wall system selection.

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

Technical Index for the Maintenance of Watertightness of the Roof of a Large-Span Membrane Structure (대공간 막 구조물 지붕의 수밀성능 확보를 위한 유지관리 지표 연구)

  • Oh, Sang-Keun;Kim, Dong-Bum;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • With the increased demand for membrane structures in recent years, there have been many studies of their mechanical properties, to the extent that such structures have become recognized as independent structures with a level of safety and durability comparable to those of other general structures. But in reality, the study for the maintenance of membrane structures has not been as active. In particularly, the study of watertightness from the perspective of maintenance has been very limited. Accordingly, a study on securing watertightness performance and the guidelines for maintenance is necessary. In this study, through a case study of water leakage accidents in membrane structures overseas, causes of leakage were selected from the membrane material itself, joint parts and open door of roof part in membrane structure. The water leakage and deterioration elements were analyzed from those leakage causes. The degree of importance of the water leakage and deterioration index was also designated using the AHP (Analytic Hierarchy Process) method. As a result, the basic technical index was suggested for the maintenance of the roofs of large-span membrane structures to prevent water leakage. This index will be used to make a guideline for the long-term maintenance of the roofs of large-span membrane structures.

A Study of Long-term Repair Plan for Maintenance of Apartment Housing (공동주택의 유지관리를 위한 장기수선계획에 관한 연구)

  • Han Bum-Jin;Kim Tae-Hui;Kim Sun-Kuk;Han Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.355-358
    • /
    • 2002
  • Since the 1960s, though there were brisk supply in apartment housing, there were no preparation in standard for to extend the life(durability) of apartment housing by maintaining the $social{\cdot}physical$ aspect of apartment housing, and in standard maintenance system. So problem such as facilities safety and residence environment has occurred. Like the condition written above, efficient usage of housing resource by the maintenance of apartment housings in a state of great urgency. In service aspect of apartment housing, establishment of accurate long term repair plan and estimate of repair appropriation fund can prevent housing's fast-deterioration. But to the performers of the maintenance, like house managers and the tenants at the subject building has little awareness of necessity in establishment of accurate long term repair plan and accumulation of repair appropriation fund. Unestablishment of long term repair plan arises problem such as approval of repair appropriation fund's unreasonable accumulation. Hence, for the utmost performance of apartment housing and to extend the economic life of a building, the method of establishment of long term repair plan and estimate of repair appropriation fund on reliable basis is to be proposed.

  • PDF

Design Strategy Analysis of the Germean Firm Braun (독일 브라운 사의 디자인 전략 분석)

  • 이병종
    • Archives of design research
    • /
    • no.18
    • /
    • pp.165-174
    • /
    • 1996
  • In the I950s the German firm Braun began to pursue a policy of uncompromising modem design for products aimed at the upper reaches of the market. Dr. Fritz Eichler as a head of design with Hans Gugelot and Otl Aicher in the Graduate School VIm developed the guide line of Braun Design strategy as the foundation of the corporate identity programme. In 1955 Dieter Rams joined the staff, and was largely responsible for establishing the formal characteristics of Braun Design and its further development. In the mid-1950s complete product programme of the firm Braun began to be re-designed, and these undoubtedly hit the market. New design line of the firm Braun, was an exclusive avantgarde movement at that time, which became to be the epitome of the idea of an objectifiable "Good Form". By the result in the 60s and 70s, when Braun product program was completely re-designed to the new line, Braun Design had a decisive influence on the design scene of the world. Braun Design is essentially functional and concrete, which depends on perfect fulfillment of purpose, precision, safety, durability, the quality of the product and, more recently, environmental compatibility is similarly balanced and unified approach, eliminating every unnecessary detail and concentrating on ordering essential elements. elements.

  • PDF

Analysis and Risk Prediction of Electrical Accidents Due to Climate Change (기후환경 변화에 따른 전기재해 위험도 분석)

  • Kim, Wan-Seok;Kim, Young-Hun;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.603-610
    • /
    • 2018
  • The development of industry and the increase in the use of fossil fuels have accelerated the process of global warming and climate change, resulting in more frequent and intense natural disasters than ever before. Since electricity facilities are often installed outdoors, they are heavily influenced by natural disasters and the number of related accidents is increasing. In this paper, we analyzed the statistical status of domestic electrical fires, electric shock accidents, and electrical equipment accidents and hence analyzed the risk associated with climate change. Through the analysis of the electrical accidental data in connection with the various regional (metropolitan) climatic conditions (temperature, humidity), the risk rating and charts for each region and each equipment were produced. Based on this analysis, a basic electric risk prediction model is presented and a method of displaying an electric hazard prediction map for each region and each type of electric facilities through a website or smart phone app was developed using the proposed analysis data. In addition, efforts should be made to increase the durability of the electrical equipment and improve the resistance standards to prevent future disasters.

Analysis of collapse course of mudstone cut slope and suggest countermeasure (이암 절토 사면의 붕괴 요인 분석 및 대책방안 제시)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.123-131
    • /
    • 2018
  • This study analyzed the collapse course of a mud stone cut slope during the construction of a express and suggested a countermeasure. Experiments were carried out on bedrock mudstone to investigate the engineering characteristics and the slope stability analysis at the time the design was reviewed. In addition, stability analysis, considering the strength softening characteristics of the slope due to the Swelling-Slaking phenomenon, was also performed. As a result of the Swelling-Slaking test, the slake durability was Low-Medium, and the swell potential was Very Low. A review of the stability analysis performed at the time of the design showed different results from the actual results because LEM analysis had been performed without considering the engineering characteristics of mudstone. As a result of additional stability analysis considering the strength softening characteristics, the slope collapse point and the maximum shear strain point of the stability analysis were the same and the standard safety factor was not satisfied. As a countermeasure, a slope mitigation method was found to be most appropriate. The mitigation slope was calculated by Finite element Analysis. A comparison with BIPS to determine the applicability of a mitigation slope revealed most of the unconsolidated mudstone.