• Title/Summary/Keyword: durability properties

Search Result 1,622, Processing Time 0.03 seconds

Effect of L-Glutamic Acid and Paraben Solution on the Endothelial Cell Proliferation in the Glutaraldehyde- Fixed Bovine Pericardium (글루타르알데하이드 고정 소심 낭막에서의 내피세포 증식에 대한 글루탕산 및 파라벤용액의 효과)

  • Kim, Beom-Sik;Lee, Mun-Hwan;Yu, Se-Yeong;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 1996
  • The conventional glutaraldehyde (GA) fixation method of tissue valves is considered to be responsible for accelerated valve degeneration. The release of toxic GA from the valve tissue is believed to limit endothelial cell (EC) ingrowth. Removal of toxic GA by reaction with L-glutamic acid and storage in a Paraben solution may offer good EC growth. To investigate the conditions for endothelialization of tissue valves, the growth properties of ECs on the conventionally and alternatively treated pericardial tissue were compared. Conventional preparation included zero-pressure fixation for 72 hours in phosphated-buffered saline (PBS) solution containing 0.5% GA at 4$^{\circ}C$ and storage into PBS containing 0.2% GA(group I). Alternatively treated pericardial tissues were divided into three postfixation treatment groups : (1) storage in PBS solution containing Paraben(group II), (2) treatment with PBS containing 8$^{\circ}C$ L-glutamic acid(PH 7.35) and storage in PBS solution containing Paraben (g oup III), (3) treatment with L-glutamic acid dissolved in distilled water (PH 3.5) (group IV). Pericardial tissue were transferred into the 24-well plate after storage for 4 weeks. ECs were harvested enzymatically from the bovine pulmonary artery and grown to confluence on culture flask surfaces. Detached ECs by trypsin were incubated into the each well of the 24-well plate including test pericardial tissues. Cells were detached by trypsin, 1, 2, 3, 5, 7 days after incubation and counted on the hemacytometer. Cell viability test was performed by frypan-blue exclusion method. Acute cell death in the group I were found even after prolonged washing. The group II showed prolonged cell survival compared with the group I. Both group III and group IV showed better cell growth than group II. There was no statistically significant difference between group III and group IV method in terms of EC growth. This results suggest that treatment by L-glutamic ac id and storage in a Paraben solution be a promising approach for improvement of durability of GA-treated tissue valves.

  • PDF

Comparison Study on the Material Characteristics of Oil Paints (I) (유화물감의 재질적 특성 비교 연구 (I))

  • Kim, Jung Heum;Park, Hye Sun;Lim, Sung Jin
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.85-95
    • /
    • 2017
  • Oil paints are mixtures of pigments, drying oils and additives. In the past, oil paints were mainly composed of inorganic pigments. However, recently color matching techniques vary depending on manufacturers due to the development of various kinds of synthetic pigments. Despite this, most studies of oil paints in South Korea are about durability tests, and there is no comparative study on the characteristics of commercial oil paint components. This study aims to compare the properties of four different kinds of oil paints from four manufacturers, which are the most popularity used. Extender pigments in oil paint from C brand differed from that of other manufacturers and various kinds of coloring pigments were differently used depending on the oil paints and the manufacturers. The mixing ratios and the pigment types differed even for oil paints having the same product name. It is assumed that these differences could affect the colors. The result of this study is expected to contribute to the analysis of artworks through the accumulation of scientific data of oil paints. In addition, it can be utilized as a scientific basis for art history studies, including the characteristics of artists or production year.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

The Estimation and Comparison of Flexural Crack Width Considering Bonding Characteristics in Reinforced Concrete Members (부착특성을 고려한 철근콘크리트 부재의 휨 균열폭 산정 및 비교)

  • Ko, Won-Jun;Min, Byung-Chul;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.579-588
    • /
    • 2006
  • In recent years, the availability of high-strength reinforcing and prestressing steels leads us to build economically and efficiently designed concrete structural members. One of critical problems faced to the structural engineers dealing with these types of structural member is controls of crack width that is used as a criterion for the serviceability in the limit state design. Especially, flexural cracking must be controlled to secure the structural safety and to improve the durability as well as serviceability of the load carving members. The proposed method utilizes the results of pure tension test in which tensile loads are applied both side of specimen, done by Ikki. The bond characteristics of deformed reinforcing bar under pure tension is considered by the area of concrete and rib area. The results of proposed method are compared with the test data and the results show that the proposed method can take into account the dimensions, variation of sectional properties, and direction of reinforcing and gives more accurate maximum bond stress and corresponding relative slip than the existing methods. the characteristics of bonding is considered by using dimensionless slip magnitude and effective reinforcement ratio. The validity of the proposed equation is verified by test experimental data.

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Hydrolysis Reaction of NaBH4 using Unsupported Co-B, Co-P-B Catalyst (비담지 Co-B, Co-P-B 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sung-June;Jung, Hyeon-Seong;Jeong, Jae-Jin;Na, Il-Chai;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.11-15
    • /
    • 2015
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells(PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-B, Co-P-B catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of unsupported Co-B catalyst was $75.7m^2/g$ and this value was 18 times higher than that of FeCrAlloy supported Co-B catalyst. The hydrogen yield of $NaBH_4$ hydrolysis reaction by unsupported catalysts using 20~25 wt% $NaBH_4$ solution was 97.6~98.5% in batch reactor. The hydrogen yield decrease to 95.3~97.0% as the concentration of $NaBH_4$ solution increase to 30 wt%. The loss of unsupported catalyst was less than that of FeCrAlloy supported catalyst during $NaBH_4$ hydrolysis reaction and the loss increased with increasing of $NaBH_4$ concentration. In continuous reactor, hydrogen yield of $NaBH_4$ hydrolysis was 90% using 1.2 g of unsupported Co-P-B catalyst with $3{\ell}/min$ hydrogen generation rate.

Preparation and Properties of Sufonated High Impact Polystyrene(HIPS) Cation Exchange Membrane Via Sulfonation (술폰화 반응에 의한 High impact polystyrene(HIPS) 양이온교환막의 제조 및 특성)

  • Kim, Yong-Tae;Kwak, Noh-Seok;Lee, Choul-Ho;Jin, Chang-Soo;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • In this study, ion exchange membranes were prepared using high impact polystyrene(HIPS) with various crosslinking and sulfonation time. Degree of sulfonation(DS) of sulfonated HIPS(SHIPS) membrane was increased with sulfonation time and decreased with crosslinking time. The highest value of DS was 66%. Also, water uptake and ion exchange capacity(IEC) of SHIPS membrane were decreased with degree of crosslinking and increased with sulfonation time. Then their values were 35.2% and 1.55 meq/g, respectively. Electrical resistance and ion conductivity of the membranes were showed more excellent value with sulfonation time. The maximum value of electrical resistance and ion conductivity were $0.4\Omega{\cdot}cm^{2}$ and 0.1 S/cm, respectively. It is indicated that the SHIPS membrane has the higher performance compare with Nafion 117. Durability of SHIPS membranes in a organic solvent was increased with increasing crosslinking time. The surface roughness of HIPS membranes were confirmed with SEM that was become uneven surface with progressing sulfonation.

Physical and Chemical Properties of Cement Mortar with Gamma-C2S

  • Lee, Sung-Hyun;Kim, Kyungnam;Mabudo, Mabudo;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • Presently, for the cement industry, studies that seek to reduce $CO_2$, because of the development of the plastic industry and demand for reduction of energy use, have been actively conducted among them, studies attempting to use Gamma-$C_2S({\gamma}-C_2S)$ to fix $CO_2$ have been actively conducted. The ${\gamma}-C_2S$ compound has an important function in reacting to $CO_2$ and stiffening through carbonatization in the air. The ${\gamma}-C_2S$ compound, reacting to $CO_2$ in the air, generates $CaCO_2$ within the pore structure of cement materials and densifies the pore structure this leads to an improvement of the durability and to the characteristic of resistance against neutralization. Therefore, in this experiment, in order to synthesize ${\gamma}-C_2S$, limestone sludge and waste foundry sands are used these materials are plasticized for 30 or 60 minutes at $1450^{\circ}C$, and are prevented from being cooled in the temperature range of $30{\sim}1000^{\circ}C$ when they are about to be cooled. XRD analysis and XRF analysis are used to determine the effects of this process on ${\gamma}-C_2S$ synthesization, the temperature at which a thing is plasticized, and the conditions for cooling that obtain in the plasticized clinker also, in order to confirm the $CO_2$ capture function, analysis of the major hydration products is conducted through an analysis of carbonatization depth and compressive strength, and through MIP analysis and XRD Rietveld analysis. As a result of these analyses, it is found that when ${\gamma}-C_2S$ was synthesized, the clinker that was plasticized at $1450^{\circ}C$ for one hour demonstrated the highest yield rate the sample with which the ${\gamma}-C_2S$ was mixed generated $CaCO_3$ when it reacted with $CO_2$ therefore, carbonatization depth and porosity were reduced, and the compressive strength was increased.

Performance Evaluation of Recycled Aggregate Concrete Made of Recycled Aggregate Modified by Carbonation (탄산화 개질 순환 골재를 사용한 순환 골재 콘크리트의 성능 평가)

  • Ha, Jung-Soo;Shin, Jin-Hak;Chung, Lan;Kim, Han-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.445-454
    • /
    • 2016
  • With the increase of decrepit facilities, construction waste increased to a certain level and now the increase is more or less stabilized. Yet construction waste still constitutes the largest portion of the overall wastes. Also, it is inevitable to spend a huge amount of the national budget due to the aggravating shortage of aggregate caused by prohibition on collection of natural aggregates as well as due to the damage to the land and environment caused by development of the sources of aggregates. As a countermeasure to the situation, the Ministry of Land, Infrastructure and Transport promulgated the quality standard for recycled aggregate to manage the usage of recycled aggregate according to its quality. But use of recycled aggregate for the purpose of high added value still remains nominal. Therefore, this research aims to study the applicability of recycled aggregate concrete as structural concrete by evaluating the quality improvement effects and the performance of the recycled aggregate concrete including recycled fine aggregate and recycled coarse aggregate that have undergone carbonation for 4 days and 14 days respectively in the condition of 60% RH, 20% $CO_2$ and $20^{\circ}C$ temperature, suggested for carbonation modifying from the advance research. The result shows carbonation modify contributed to quality improvement with 0.91% decrease in absorption rate for recycled fine aggregate and 0.7% decrease in absorption rate for recycled coarse aggregate. The physical properties and durability of the recycled aggregate made of aggregate modified by carbonation showed results similar to general concrete, which confirmed the possibility of applying the recycled aggregate made of recycled aggregate modified by carbonation to structural concrete.