• Title/Summary/Keyword: durability damage

Search Result 533, Processing Time 0.027 seconds

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

Verification of Behavior Characteristics of Precompression Polyurethane Damper Using Superelastic Shape Memory Alloy (초탄성 형상기억합금을 적용한 선행압축 폴리우레탄 댐퍼의 거동 특성 검증)

  • Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.413-420
    • /
    • 2023
  • Among the seismic structures for reducing earthquake damage, the seismic control structure is a technology that can efficiently improve seismic performance and secure economic feasibility by simply applying a damper. However, existing dampers have limitations in terms of durability due to required seismic performance and material plasticity. In this study, we proposed a polyurethane damper with enhanced recovery characteristics by applying precompression to polyurethane, which basically shows elastic characteristics, and applying superelastic shape memory alloy (SSMA). To verify the characteristics of the polyurethane damper, the concept was first established, and the design details were completed by selecting SSMA and steel, and selecting the precompression size as design variables. In addition, structural tests were conducted to derive response behavior and analyze force resistance performance, residual displacement, recovery rate, and energy dissipation capacity. As a result of the analysis, the polyurethane damper showed that various performances improved when the SSMA wire was applied and the precompression increased.

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Enhancement of concrete crack detection using U-Net

  • Molaka Maruthi;Lee, Dong Eun;Kim Bubryur
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.152-159
    • /
    • 2024
  • Cracks in structural materials present a critical challenge to infrastructure safety and long-term durability. Timely and precise crack detection is essential for proactive maintenance and the prevention of catastrophic structural failures. This study introduces an innovative approach to tackle this issue using U-Net deep learning architecture. The primary objective of the intended research is to explore the potential of U-Net in enhancing the precision and efficiency of crack detection across various concrete crack detection under various environmental conditions. Commencing with the assembling by a comprehensive dataset featuring diverse images of concrete cracks, optimizing crack visibility and facilitating feature extraction through advanced image processing techniques. A wide range of concrete crack images were collected and used advanced techniques to enhance their visibility. The U-Net model, well recognized for its proficiency in image segmentation tasks, is implemented to achieve precise segmentation and localization of concrete cracks. In terms of accuracy, our research attests to a substantial advancement in automated of 95% across all tested concrete materials, surpassing traditional manual inspection methods. The accuracy extends to detecting cracks of varying sizes, orientations, and challenging lighting conditions, underlining the systems robustness and reliability. The reliability of the proposed model is measured using performance metrics such as, precision(93%), Recall(96%), and F1-score(94%). For validation, the model was tested on a different set of data and confirmed an accuracy of 94%. The results shows that the system consistently performs well, even with different concrete types and lighting conditions. With real-time monitoring capabilities, the system ensures the prompt detection of cracks as they emerge, holding significant potential for reducing risks associated with structural damage and achieving substantial cost savings.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.

A Study on the Development and Performance Evaluation of Permeable GFRP Strengthening Panel for RC Structure (투수성 GFRP 보강 복합체 개발 및 투수성에 대한 연구)

  • Jo, Byung Wan;Kang, Seok Won;Park, Cheol;Kim, Jang Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • Recently the exterior attaching reinforcement method is being often used by using FRP (Fiber Reinforced Polymer) as a method of strengthening concrete structure. this FRP exterior attaching reinforcement method has several advantages like high intensity, stiffness, good durability and easy installment comparing to its weight. but its structure is airtight covered by reinforcement material whose water permeability is low and water can't be discharged, thus it may provoke a damage to the structure after a long while. the main purposes of this study are to develop GFRP reinforcement material which can discharge the surface water properly and to measure its special functions. for this, we have changed the normal reinforcement material to water permeable structure and measured its water permeance modulus by an indoor test which shows the process of water permeance with the parameter of contained GFRP quantity. also tried to verify the measured value of the water permeance modulus in theory by analyzing the numbers on water permeance process. the test result showed that the biggest quantity of water, 0.5129 g/h $m^2$ was discharged when the fiber contained quantity reached at 75% and the tensile strength was also biggest by 476.6MPa at 75%, so it appeared that COSREM GP panel with 75% fiber contained quantity is the best in ventilation and structure.

Influence of Bubble Sheet Applying Methods on Temperature of Exposed Joint Rebar at Wall Surface of Load-Bearing Wall Structure Building During Winter (동절기 벽식구조 건축물 벽부분의 버블시트 포설방법 변화가 이음부 노출철근의 온도에 미치는 영향)

  • Han, Cheon-Goo;Lee, Jea-Hyeon;Kim, Min-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • In this research, the surface covered curing method using the double-layered bubble sheet was evaluated. This double-layered bubble sheet has outstanding insulating performance with its low heat conductivity and high economic feasibility with its high durability. However, in the case of wall-typed building construction, the area of exposed rebar is curious on curing performance with the double-layered bubble sheet in spite of the double-layered bubble sheet showed favorable performance for slab. Therefore, in this research, regarding the actually constructed wall-typed apartment building, the most efficient curing method was suggested based on the evaluation of curing performance depending on temperature distribution depending on various location of covered or exposed rebar. As a result, the D method was determined as the most efficient curing method without any concern of early-age frost damage. However, by considering easiness of construction, the B method of covering the pieced double-layered bubble sheet on gap between rebars can be another option of desired result.

Comparison of Optimum Drilling Conditions of Aircraft CFRP Composites using CVD Diamond and PCD Drills (CVD 다이아몬드 및 PCD이 드릴을 이용한 항공용 CFRP 복합재료의 홀 가공성 비교)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2011
  • Recently CFRP laminate joints process by bolts and nets are developed rapidly in aircraft industries. However, there are serious drawback during jointing process. Many hole processes are needed for the manufacturing and structural applications using composite materials. Generally, very durable polycrystalline crystalline diamond (PCD) drill has been used for the CFRP hole process. However, due to the expensive price and slow process speed, chemical vapor deposition (CVD) diamond drill has been used increasingly which are relatively-low durability but easily-adjustable process speed via drill shape change and price is much lower. In this study, the comparison of hole process between PCD and CVD diamond coated drills was done. First of all, CFRP hole processbility was evaluated using the equations of hole processing conditions (feed amount per blade, feed speed). The comparison on thermal damage occurring from the CFRP specimen was also studied during drilling process. Empirical equation was made from the temperature photo profile being taken during hole process by infrared thermal camera. In addition, hole processability was compared by checking hole inside condition upon chip exhausting state for two drills. Generally, although the PCD can exhibit better hole processability, hole processing speed of CVD diamond drill exhibited faster than PCD case.