• 제목/요약/키워드: durability damage

Search Result 533, Processing Time 0.03 seconds

Service Life Prediction of Marine Rubber Fender

  • Woo, Chang-Su;Park, Hyun-Sung;Sung, Il-Kyung;Yun, Soon-Hwan;Lee, Jae-Moon
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.70-76
    • /
    • 2019
  • The function and purpose of the marine rubber fender, to prevent the damage of the ship and the mooring while the ship is being attached to the pier. However, maintenance of the fender after installation is not enough, because it is generally handled as an attachment facility. Estimation the life of a marine rubber fender is important in the maintenance of a port. When manufacturers design and produce marine rubber fenders, they do so according to various conditions such as the reaction force acting on the hull and docking vessel and deformation after absorbing the kinetic energy of the ship. In this study, a method for predicting and evaluating service life from the product design and development stage was established, in order to evaluate the durability of the marine rubber fenders. The SSp-300H and HSP-300H models were used to predict the service life. The method developed in this study, is expected to predict the service life of the marine rubber fender accurately and in a comparatively shorter time, thereby contributing to the evaluation standard and quality stability of the product.

Platform of ICT-based environmental monitoring sensor data for verifying the reliability (ICT 기반 환경 모니터링 센서 데이터의 신뢰성 검증을 위한 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2021
  • In recent years, in the domestic industry, personal damage has occurred due to sensor malfunction and the emission of harmful gases. But there is a limit to the reliability verification of sensor data because the evaluation of environmental sensors is focused on durability and risk tests. This platform designed a sensor board that measures 10 major substances and a performance verification system for each sensor. In addition, the data collected by the sensor board was transferred to the server for data reliability evaluation and verification using LoRa communication, and a prototype of the sensor data platform was produced to monitor the transferred data. And the collected data is analyzed and predicted by using machine learning techniques.

Defect detection of vacuum insulation panel using image analysis based on corner feature detection (코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출)

  • Kim, Beom-Soo;Yang, Jeonghyeon;Kim, Yeonwon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.

Development of Environmental Test Specifications for Aircraft Using Measured Vibration Data (항공기 실측 진동 데이터를 이용한 환경시험 규격 생성 연구)

  • Kim, Choonghyun;Song, Keehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2021
  • Developers generally use test standards suggested by military standards such as MIL-STD-810G when performing vibration tests in the materiel development. However, according to MIL-STD-810G, it is recommended to test by tailoring the test standard suitable for the developed materiel, and it is specified to apply the suggested test standard only when there is difficulty in tailoring. In addition, the test standards presented by MIL-STD-810G are standards created under operating conditions different from the actual operating environment of each developed materiel, so the test according to this standard may be excessive or understated. Therefore, the developer must create an appropriate vibration test standard for the developed materiel as similar to the operating conditions as possible. In this paper, the procedure for creating the functional test standard and durability test standard suitable for the operating environment of the equipment to be mounted on the propeller aircraft under development is described, and the created standard is introduced.

Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation (전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치)

  • Cha, Kyunghwan;Heo, Deokjae;Lee, Sangmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.

Corrosion Characteristics of St37.4 Carbon Steel for Ship Fuel Pipe with Ammonia Concentration (선박 연료배관용 St37.4 탄소강의 암모니아 농도에 따른 부식 특성)

  • Do-Bin, Lee;Seung-Jun, Lee
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.514-524
    • /
    • 2022
  • Carbon emissions from fuel consumption have been pointed by scientists as the cause of global warming. In particular, fossil fuels are known to emit more carbon when burned than other types of fuels. In this regard, International Maritime Organization has announced a regulation plan to reduce carbon dioxide emissions. Therefore, recently, Liquefied Natural Gas propulsion ships are responding to such carbon reduction regulation. However, from a long-term perspective, it is necessary to use carbon-free fuels such as hydrogen and ammonia. Nitrogen oxides might be generated during ammonia combustion. There is a possibility that incompletely burned ammonia is discharged. Therefore, rather than being used as a direct fuel, Ammonia is only used to reduce NOX such as urea solution in diesel vehicle Selective Catalyst Reduction. Currently, LPG vehicle fuel feed system studies have evaluated the durability of combustion injectors and fuel tanks in ammonia environment. However, few studies have been conducted to apply ammonia as a ship fuel. Therefore, this study aims to evaluate corrosion damage that might occur when ammonia is used as a propulsion fuel on ships.

Study on the High-Strength Air-Cushion Fabrics for Impact-Relief Application Prepared through Primer Coating and Thermal Film Laminating (프라이머 코팅과 열융착 필름 라미네이팅을 통해 제조한 충격 완화용 고강력 에어쿠션 직물에 관한 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • In this study, the laminating of TPU film after coating of primer adhesive on the fabrics was applied in order to secure the strength to withstand a fall from a higher altitude by increasing the adhesion between the fabric and the film layer. It seems that the fineness of the yarn and the weave construction have a greater effect than the type of the laminating films. The order of superiority of the laminated fabrics by film type and thickness was the same for 1000 denier and 210 denier fabrics, and the tendency was consistent with the order of superiority in the film properties and peel strength tests. The tear strength of laminating fabrics increased three to four times for 1000 denier fabrics compared to the fabric alone, but it decreased by 2 times for the 210 denier fabrics. Summarizing the above results, it is most appropriate to combine 1000d fabric with three types of laminating films(100~200㎛ thickness) of A(0.2T) or B(0.15T) or D(0.1T) considering the air pressure resistance, the impact resistance during the fall, and the durability against damage during use.

Capturing research trends in structural health monitoring using bibliometric analysis

  • Yeom, Jaesun;Jeong, Seunghoo;Woo, Han-Gyun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.361-374
    • /
    • 2022
  • As civil infrastructure has continued to age worldwide, its structural integrity has been threatened owing to material deteriorations and continual loadings from the external environment. Structural Health Monitoring (SHM) has emerged as a cost-efficient method for ensuring structural safety and durability. As SHM research has gradually addressed an increasing number of structure-related problems, it has become difficult to understand the changing research topic trends. Although previous review papers have analyzed research trends on specific SHM topics, these studies have faced challenges in providing (1) consistent insights regarding macroscopic SHM research trends, (2) empirical evidence for research topic changes in overall SHM fields, and (3) methodological validations for the insights. To overcome these challenges, this study proposes a framework tailored to capturing the trends of research topics in SHM through a bibliometric and network analysis. The framework is applied to track SHM research topics over 15 years by identifying both quantitative and relational changes in the author keywords provided from representative SHM journals. The results of this study confirm that overall SHM research has become diversified and multi-disciplinary. Especially, the rapidly growing research topics are tightly related to applying machine learning and computer vision techniques to solve SHM-related issues. In addition, the research topic network indicates that damage detection and vibration control have been both steadily and actively studied in SHM research.

Analysis of the effect of punch wear on shear surfaces in the piercing process (피어싱 공정에서의 펀치 마모가 전단면에 미치는 영향 분석)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2022
  • The recent increasing application rate of advanced high-strength steel(AHSS) for automotive parts makes it difficult to ensure the durability of forming tools. Significant load and friction generated during the piercing process of AHSS increase the wear rate and the damage degree to dies. These harsh process conditions also yield product failures, such as dimensional inconsistency of pierced holes and insufficient quality of hole's sheared edge. This study analyzed the effect of punch wear on the sheared surface of pierced parts and the forming load during the piercing process. Wear-shaped punches showed approximately 20% higher piercing load than normal-shaped punches, and the rollover ratio of the sheared surface also increased. It is considered that the dull edge of wear-shaped punches does not penetrate directly into the material but shears after tensioning it in a piercing direction. In addition, wear-shaped punches experienced compressive load even after completing the piercing process during the down-stroke and tensile load during the up-stroke. This load variation is related to the smaller diameter piercing holes produced by wear-shaped punches compared to normal-shaped punches. Thus, we demonstrated the predictability of the wear level of dies through a comparative analysis of the piercing load pattern.