• Title/Summary/Keyword: duplex stainless

Search Result 206, Processing Time 0.019 seconds

Corrosion Resistance of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 부식 저항성에 관한 연구)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential (음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

Effect of Phase Composition on High Temperature Plasticity for Duplex Stainless Steel (Duplex Stainless Steel의 상변화에 따른 고온 소성변형 거동)

  • Choi, Jae-Ho;Choe, Byung-Hak;Kim, Seung-Eon
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • The high temperature mechanical behaviour of duplex stainless steels was examined. The relation-ship between the dynamic recrystallization substructures and the flow behaviour was analyzed in detail, and the flow behaviour was analyzed in detail, and the mechanisms of dynamic recrystallization were also discussed. The formation of disloca-tion cells and subgrain structures is of great significance to the understanding of high temperature deformation.

  • PDF

A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy (2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

Effect of Cu Addition on the Properties of Duplex Stainless Steels

  • Hwangbo, D.;Yoo, Y.R.;Choi, S.H.;Choi, S.J.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.273-281
    • /
    • 2022
  • The effect of addition of Cu on the localized corrosion performance of aged duplex stainless steel in chloride media has yet to be explained in a consistent manner, and there is some controversy in the literature regarding the composition of stainless steel and the experimental conditions (pH, temperature, chloride concentration, etc.) used. In this work, the effect of the addition of Cu on the microstructure, hardness, and corrosion resistance of duplex stainless steel in an acidic chloride or high concentration sulfuric acid solutions was investigated for annealed and aged alloys. The Cu addition of annealed duplex stainless steel strengthened the alloy and reduced the ferrite contents of the alloy, and it also increased the polarization behavior in chloride or sulfuric solutions, except for the case of a high potential in acidic chloride solution. However, the Cu addition of aged duplex stainless steel reduced the formation of harmful phases such as sigma and kai and increased the polarization behavior in acidic chloride or sulfuric solutions up to 0.8 wt% of the Cu content, after which it slightly decreased at 0.8 wt% Cu or more.

A Study on the Effect of Corrosion Resistance According to the Composition Variety of C, Cr, N in Duplex Stainless Steel

  • Kim, Hyeong-Jin;Cho, Kye-Hyun;Jung, Jae-young
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.179-186
    • /
    • 2004
  • Recently the alloy development of duplex stainless steel has been done. On this study we studied the effect of the corrosion resistance according to the composition variety of C, Cr, N in the alloy elements of duplex stainless steel. materials which have below 0.1[mm/year] corrosion rate enable to use for corrosion-resisting materials, generally. On this experiment we inspected the effect of the composition variety of C, Cr, N in duplex stainless steel and the heat treatment, which the condition was the water quenching after the heat treatment for 1hr. The experiment was done on the basis of the ASTM G48A test, Critical pitting temperature(CPT), and ASTM G-61(Electrochemical tests for cyclic polarization).

Effects of Cutting and Welding on Hardness Values of Duplex and Superduplex Stainless Steel Weldments (절삭과 용접에 의한 Duplex계 스테인레스강 용접부의 경도 영향 평가)

  • 허희영;선혜선;윤동렬;장태원
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.103-105
    • /
    • 2003
  • Currently, duplex and superduplex stainless steels are widely used for piping system in offshore unit because of its excellent combination of strength and corrosion resistance properties. Also, the usage of duplex and superduplex stainless steel is steadily increasing with getting into step with development of offshore industries. In spite of excellent merits in mechanical and chemical properties of base materials, sometimes stringent requirements in welding procedure qualification and fabrication of duplex class material have regulated not only the application of various high-efficiency welding processes but also applicable welding parameters. This study is focused on hardness requirement which is known as one of the most stringent factor in duplex class material welding and this study aims to evaluate the effects of cutting and welding methodology on hardness values of duplex and superduplex stainless steel weldments.

  • PDF

Evaluation of Performance in Semi-Open Type Impeller by Duplex Stainless Material for Ballast Water Centrifugal Pump (듀플렉스 스테인리스강 소재를 응용한 Semi-Open Type 임펠러의 성능 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Gang, Young-Gwan;Lee, Sang-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • A special usage impeller pump for ballast water treatment is part of an offshore plant's structure. It has to maintain a high corrosion resistance in an extreme environment, in which it can contact several kinds of aqueous solutions. The duplex stainless steel used in such severe environments is known to have corrosion resistance and excellent mechanical properties. This study estimated the performance of an impeller pump system designed using duplex stainless steel through a computational fluid dynamics analysis. As a result, it was determined that the pressure drop increases and the impeller performance is lowered if the equivalent roughness is enlarged. The surface precision of the duplex stainless steel must be consistently maintained. If thisis the case, it was determined that the existing STS steel can be substituted for the Duplex stainless steel.

Effect of Welding Processes on Corrosion Resistance of UNS S31803 Duplex Stainless Steel

  • Chiu, Liu-Ho;Hsieh, Wen-Chin
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to $250^{\circ}C$ is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as $\sigma$, $\gamma_2$ and $Cr_2N$ may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% $FeCl_3$ solution at $47.5^{\circ}C$ for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of $\sigma$ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution.