• Title/Summary/Keyword: ductility-based seismic design

Search Result 189, Processing Time 0.022 seconds

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

Estimation of Drift Ratio by Damage Level for Flexural RC Piers With Circular Cross-Section Based on Experimental Data in Korea (실험자료를 기반한 국내 원형단면 철근콘크리트 휨교각의 손상수준 별 횡변위비 산정)

  • Nam, Hyeonung;Hong, Kee-Jeung;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.255-265
    • /
    • 2022
  • In order to determine fragility curves, the limit state of piers for each damage level is suggested in this paper based on the previous test results in Korea, including our test results. In previous studies, the quantitative measures for damage levels of piers have been represented by curvature ductility, lateral drift ratio, or displacement ductility. These measures are transformed to lateral drift ratios of piers for consistency, and the transformed values are compared and verified with our push-over test results for flexural RC piers with a circular cross-section. The test specimens are categorized concerning the number of lap-splices in the plastic hinge region and whether seismic design codes are satisfied or not. Based on the collected test results in Korea, including ours, the lateral drift ratio for each pier damage level is suggested.

Seismic design and assessment of steel-concrete frame structures with welded dissipative fuses

  • Calado, Luis;Proenca, Jorge M.;Sio, Joao
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.527-544
    • /
    • 2020
  • This research presents the design and numerical assessment of composite steel-concrete frame structures with welded dissipative fuses. The assessment has been carried out based on linear response spectrum, nonlinear static pushover and time history procedures. The analytical expressions which define the envelope of the nonlinear response of the dissipative fuses are first presented and calibrated against experimental results available in literature. The assessment is then carried out according to a design methodology proposed herein. Outcomes of the numerical assessment indicate that the use of welded dissipative fuses successfully limited damage within the replaceable parts. Furthermore, although structures with dissipative fuses present lower strength and, generally, lower displacement capacity, their displacement ductility and global dissipative performance are generally higher than conventional structures, especially when the structure with dissipative fuses presents a dissipative configuration adjusted to the bending moment distribution diagram calculated for the applied seismic action.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Seismic performance of a novel bolt-and-welded connection of box-section beam and box-section column

  • Linfeng Lu;Songlin Ding;Yuzhou Liu;Zhaojia Chen;Zhongpeng Li
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.375-382
    • /
    • 2023
  • The H-shaped steel beam is popular due to its ease of manufacturing and connection to the column. This profile, which is used as a shallow beam, needs the high weak-axis bending stiffness and torsional stiffness to meet the overall stability. Achieving the local beam flange stability, bearing capacity, bending stiffness, and torsional requirements need a great thickness and width of the beam flange, which causes, which will cause more uneconomical structural design. So, the box-section beam is the ideal alternative. However, the current design specifications do not have design rules for the bolt-and-welded connection of the box-section beam and box-section column. The paper proposes a novel bolt-and-welded connection of the box-section beams and box-section columns based on a high-rise structural design scheme. Three connection models, BASE, WBF, and RBS, are analyzed under cyclic loading in ABAQUS software. The failure modes, hysteresis response, bearing capacity, ductility, plastic rotation angle, energy dissipation, and stiffness degradation of all models are determined and compared. Compared with the other two models, the model WBF exhibited excellent seismic performance, ductility, and plastic rotation ability. Finally, model WBF was chosen as the connection scheme used in the project design.

Overstrength and Response Modification Factor in Low Seismicity Regions (약진지역에서의 초과강도 및 반응수정계수)

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun;Kim, Tae-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.57-64
    • /
    • 2006
  • Seismic design codes are mainly based on the research results for the inelastic response of structures in high seismicity regions. Since wind loads and gravity loads may govern the design in low seismicity regions in many cases, structures subjected to design seismic loads will have larger overstrength compared to those of high seismicity regions. Therefore, it is necessary to verify if the response modification factor based on high seismicity would be adequate for the design of structures in low seismicity regions. In this study, the adequacy of the response modification factor was verified based on the ductility and overstrength of building structures estimated from the result of nonlinear static analysis. Framed structures are designed for the seismic zones 1, 2A, 4 in UBC-97 representing the low, moderated and high seismicity regions and the overstrength factors and ductility demands of the example structures are investigated. When the same response modification factor was used in the design, inelastic response of structures in low seismicity regions turned out to be much smaller than that in high seismicity regions because of the larger overstrength of structures in low seismicity regions. Demands of plastic rotation in connections and ductility in members were much lower in the low seismicity regions compared to those of the high seismicity regions when the structures are designed with the same response modification factor.

Ductility Demand of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 연성도 해석)

  • 홍성걸;김영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1999
  • This study presents a simplifled calculation method for required ductility of coupling beams in precast coupled shear walls at preliminary seismic design stages. Deflection of precast coupled shear walls based on a continuum approach is combined with inelastic gap opening of horizontal connection of panels to provide a relationship between the system-level ductility and the element-level ductility in a precast coupled shear wall. The equation proposed herein for ductility requirement for coupling beams shows that higher stiffness and lower strength of coupling beams result in high ductility reuqirement. The equation also shows that the ductility requirement is proportional to the degree of gap opening of the story in question. However, the coupling beam ductility in higher stories are not affected by gap openings of horizontal connections of panel.

  • PDF

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.