• 제목/요약/키워드: ductility ratio

검색결과 732건 처리시간 0.026초

Effect of confinement on flexural ductility design of concrete beams

  • Chen, X.C.;Bai, Z.Z.;Au, F.T.K.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.129-143
    • /
    • 2017
  • Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

고강도 철근 콘크리트 기둥 부재의 연성해석 (An Analytical Evaluation of the Ductility of Reinforced High-Strength Concrete Columns)

  • 박훈규;장일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.463-466
    • /
    • 1999
  • Ductility is an important consideration in the design of reinforced high-strength concrete. Therefore, this research investigate the ductile behavior of rectangular high-strength concrete columns like as bridge piers with confinement steel. The effect on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear ratio, and compressive strength of concrete were investigated analytically using layered section analysis. As the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

  • PDF

탄소성 단자유도 구조물에 대한 연성계수의 통계적 분석 (Statistical Study of Ductility Factors for Elastic Perfectly Plastic SDOF Systems)

  • 강철규;최병정
    • 한국지진공학회논문집
    • /
    • 제7권2호
    • /
    • pp.39-48
    • /
    • 2003
  • 반응수정계수의 핵심구성요소인 연성계수에 대하여 통계적 분석을 수행하였다. 연성계수의 체계적인 산정을 위하여 총 1,860개의 지진기록을 수집하였다. 수집된 지진기록을 지반 전단파의 평균속도에 따라 4가지로 분류하고, 탄소성 이력거동을 가지는 단자유도 구조물에 대하여 비탄성 스펙트럼을 작성하였다. 작성된 비탄성 스펙트럼으로부터 연성계수를 구하고, 변위연성비, 토질조건, 규모 및 진앙거리가 연성계수에 미지는 영향을 분석하였다. 토질 조건별로 평균연성계수를 구하고, 산정된 연성계수의 산포도를 검토하기 위하여 변동계수를 산정하였다.

고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향 (Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns)

  • 이영호;정헌수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

고강도 콘크리트를 이용한 철근콘크리트 기둥 부재의 연성평가에 관한 연구 (An Analytical Evaluation on the Ductility of Reinforced High-Strength Concrete Columns)

  • 장일영;송재호;한상묵;박훈규
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.57-66
    • /
    • 2000
  • The ductility is an important consideration in the design of reinforced concrete structures. In the seismic design of reinforced concrete columns, it is necessary to allow for relatively large ductilities that the seismic energy be absorbed without shear failure of significant strength degradation after the reinforcement yielding in columns. Therefore, prediction of the ductility should be as accurate as possible. This research investigate the ductile behavior of rectangular reinforced high-strength concrete columns like as bridge piers with confinement steel. The effects on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear span ratio, and compressive strength of concrete were investigated analytically using layered section analysis. as the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks

  • Mazloom, Moosa;Afkar, Hossein;Pourhaji, Pardis
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.445-461
    • /
    • 2018
  • The aim of this research is to evaluate the effects of the number of spans, height of spans, number of floors, height of floors, column to beam moment of inertia ratio, and plastic joints distance of beams from columns on the ductility of moment frames. For the facility in controlling the ductility of the frames, this paper offers a simple relation instead of complex equations of different codes. For this purpose, 500 analyzed and designed frames were randomly selected, and their ductility was calculated by the use of nonlinear static analysis. The results cleared that the column-to-beam moment of inertia ratio had the highest effect on ductility, and if this relation was more than 2.8, there would be no need for using the complex relations of codes for controlling the ductility of frames. Finally, the ductility of the most frames of this research could be estimated by using the combination of genetic algorithm and artificial neural networks properly.

Ductility and inelastic deformation demands of structures

  • Benazouz, Cheikh;Moussa, Leblouba;Ali, Zerzour
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.631-644
    • /
    • 2012
  • Current seismic codes require from the seismically designed structures to be capable to withstand inelastic deformation. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformation and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the performance-based seismic design through capacity-spectrum methods. In this paper, the median of the ductility demand ratio for 80 ground motions are presented for different levels of normalized yield strength, defined as the yield strength coefficient divided by the peak ground acceleration (PGA). The influence of the post-to-preyield stiffness ratio on the ductility demand is investigated. For fixed levels of normalized yield strength, the median ductility versus period plots demonstrated that they are independent of the earthquake magnitude and epicentral distance. Determined by regression analysis of the data, two design equations have been developed; one for the ductility demand as function of period, post-to-preyield stiffness ratio, and normalized yield strength, and the other for the inelastic deformation as function of period and peak ground acceleration valid for periods longer than 0.6 seconds. The equations are useful in estimating the ductility and inelastic deformation demands for structures in the preliminary design. It was found that the post-to-preyield stiffness has a negligible effect on the ductility factor if the yield strength coefficient is greater than the PGA of the design ground motion normalized by gravity.

지진하중을 받는 철근콘크리트 교각의 연성도 상관관계 (Ductility Relationship of RC Bridge Columns under Seismic Loading)

  • 손혁수;이재훈
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.51-61
    • /
    • 2003
  • 본 연구는 철근콘크리트 교각에 대한 새로운 내진설계법을 개발하기 위한 연구의 일환으로서, 축력과 함께 반복 횡하증을 받는 철근콘크리트 교각의 곡률연성도와 변위연성도의 상관관계를 분석하고 연성도 상관관계식을 제시함을 목적으로 한다. 이를 위하여, 반복하중을 받는 철근콘크리트 기둥의 횡하중-변위 포락곡선 실험결과를 비교적 정확하게 예측하며, 특히 변형능력 및 연성도에 대하여는 실험결과에 비하여 안전측의 결과를 제공하는 비선형해석 프로그램(NARCC)를 이용하였다. 해석의 대상 교각으로는, 단면지름, 형상비, 콘크리트 강도, 축방향철근 항복강도, 심부구속철근 항복강도, 축방향철근비, 축력비, 심부구속철근비 등을 주요변수로 하여, 총 7,200개의 철근콘크리트 나선철근 기둥 모델을 채택하였으며, 세 가지 항복변위의 기준을 적용하여 총 21,600개의 해석결과자료를 대상으로 상관관계를 분석하여 형상비를 주요변수로 한 곡률연성도와 변위연성도의 상관관계식을 제안하였다.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.