• 제목/요약/키워드: ductility improvement

검색결과 182건 처리시간 0.033초

휨재의 인성개선에 관한 연구 (Studies on Improvement of Ductility of Flexural Members)

  • 정일영
    • 콘크리트학회지
    • /
    • 제5권3호
    • /
    • pp.125-132
    • /
    • 1993
  • 콘크리트의 인성개선을 위하여 횡보강근을 사용할 수 있으나 보통강도으 철근ㅇ르 사용하였을 경우에는 조속한 철근의 강상으로 인한 콘크리트으 인성개선효과가 급격히 떨어지기 때문에 고강도 횡보강도에 의한 압축인성 개선효과를 이론 및 실험으로 고찰하였다. 실험결과 각 공시체의 변형능력을 비교해 보면 보통강도근의 경우 콘크리트 응력블록계수가 최대일 때 콘크리트의 압축단 변형도가 1%내외인데 비하여 고강도근으로 횡보강하였을 경우가 콘크리트의 압축변형도는 2%로서 충분한 휨압축 인성개선용으로 콘크리트의 충분한 인성개선이 가능하다고 볼 수 있다.

FRP 긴장재를 이용한 프리스트레스트 콘크리트보의 연성개선방법 (Ductility Improveent Methods for Cncrete Beams Prestressed with FRP (Fiber Reinforced Plastic) Tendons)

  • 정상모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.643-648
    • /
    • 1998
  • Despite many advantages of FRP materials, such as corrosion resistance, their linear elastic behavior up to rupture is likely to result in a lack of ductility. This paper discusses ductility improvement methods for prestressed concrete beams using FRP tendons. The methods were evaluated thorough extensive analytical and experimental investigations. The methods include optimization of sectional ductility through proper reinforcement, concrete confinement, concrete reinforcement with fibers, and prestressing with unbonded tendons.

  • PDF

유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가 (Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test)

  • 이은희;정영수;박창규;김영섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향 (The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy)

  • 권성희;박종혁;김문철;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과 (An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force)

  • 신성우;안종문
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Fe-Ni-Co 코바 합금의 고온변형거동에 미치는 합금원소(Mn, Mo, B) 첨가의 영향 (Effect of Alloying Elements(Mn, Mo, B) on the High Temperature Deformation Behavior of Low Thermal Expansion Fe-Ni-Co Alloy)

  • 이기안;윤애천;박중철;남궁정;김문철
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.240-248
    • /
    • 2008
  • The effect of alloying elements(Mn, S, Mo, B) on the high temperature deformation behavior of Fe-29%Ni-17%Co (Kovar) alloy were investigated. And the effect of high temperature oxidation on the hot ductility was also studied. The hot ductility of Kovar alloy was drastically increased with the addition of Mn and lowering of S content. It has been found that the brittle intergranular fracture at high temperature cracking is closely associated with the FeS sulfide along the grain boundary. When Mn was added, the type of sulfide was changed to MnS from FeS and ductile intergranular fracture and transgranular fracture were promoted. The formation of oxide layer was found to have minimized the hot ductility of the Kovar alloy significantly. Grain boundary micro-cracks in the internal oxide region were noted following deformation due to high temperature, one of which acting as a notch that caused the poor hot workability of the oxidized specimen. The addition of Mo to the Kovar alloy could also retard the decrease in the hot ductility of the oxidized specimen through the prevention of notching due to internal oxidation. Hot ductility was remarkably improved by the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range ($900{\sim}1000^{\circ}C$).

Ti-Nb 합금강에서 합금성분의 변화에 따른 석출물거동이 고온연성에 미치는 영향 (Effect of Precipitates on Hot Ductility Behavior of Steel Containing Ti and Nb)

  • 한원배;이종호;김희수;안현환;이승재;김성우;서석종;윤종승
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.285-292
    • /
    • 2012
  • Hot ductility behavior of precipitation-hardened low-carbon iron alloys containing 0.02 wt% Ti and 0.05 wt% Nb was characterized by a hot tensile stress test. Carbon (0.05, 0.1, 0.25 wt%) and boron (0.002 wt%) contents were varied to study the effect of precipitates on the high-temperature embrittlement of the alloys in the temperature range of $600{\sim}800^{\circ}C$. Ductility loss was observed at $700^{\circ}C$ for the tested alloys. The cause of the ductility loss was mainly attributed to the carbides and ferrite films formed at the grain boundaries during deformation. Although the carbon content tended to raise the total fraction of Nb (C, N), the precipitates were formed mostly in the grain interior as the precipitation temperature was raised above the deformation temperature by the high carbon content. Hence, carbon in excess suppressed the hot ductility loss. Meanwhile, boron addition improved the hot ductility of the alloys. The improvement is likely due to the boron atoms capturing carbon atoms and thus retarding the carbide formation.

철도레일 테르밋 용접부의 기계적 특성 향상 방안에 관한 연구 ((A) Study on the Mechanical Properties Improvement of Thermite Welded Zone of Railroad Rail)

  • 최상규;박성상;백응률;전봉길
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2101-2106
    • /
    • 2011
  • It is reported that about more than 45% of damage shown in railroad rails include breakage of rail end which cross the center of Thermit welded zone. Thermite welding is always accompanied by numerous aluminum oxide and secondary inclusions, which may have a negative influence on the ductility and toughness of the weld metal. In this study the aluminum powder recycled by waste aluminum can was used for iron oxide generated after the process of welding rod and the remain aluminum was reduced by minimizing the quantity of aluminum. And complete dissolution was induced by using ferro Mn powder as the additive element. This study reviewed the applicability of heat treatment in the welded zone of rail using ceramic heating pad by carrying it out. This study could observe the improvement of the mechanical characteristics (UTS and elongation) and the changes of failure mechanism from brittleness to ductility. It could be found that improved strength and elongation result from pearilte fine structure.

  • PDF