• 제목/요약/키워드: ductile-brittle transition temperature

검색결과 86건 처리시간 0.021초

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

소형 펀치시험에 의한 강용접부의 파괴강도 평가에 관한 연구 2

  • 류대영;송기홍;정세희
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.56-67
    • /
    • 1989
  • In this study, the possibility of evaluating the peculiar fracture strength of weldment in high strength steels was investigated by means of a small punch(SP) test. In order to obtain the ductile-brittle transition temperature(DBTT) of SP energy by which the fracture strength of weldment in structural steels such as SS41 and SM53B steels had been evaluated in our preceding publication, the effects of notches and loading rates on SP energy were discussed. It was found that the correspondence of SP energy to critical COD at test temperature -196.deg. C showed a linear relation with some deviation. The empirical correlation with scatter band, Esp/(Esp)p = 1.67[.delta./(.delta./sub c//(.delta./sub c/)/sub p/]-0.55, was developed between the SP energy ratio and critical COD ratio of each weld structure compared with parent material at test temperature -196.deg. C. In addition, there did not appear to be a significant effect of test materials and specimen size etc. on the correlation.

  • PDF

취성-연성 전이 model을 이용한 사파이어 단결정의 prism plane slip {1120} <1100> 전위속도에 대한 활성화에너지 계산 (The Estimation of Activation Energy for Prism Plane SliP {1120} <1100> Dislocation Velocity in Sapphire Single Crystals using Brittle-to-ductile Transition Model)

  • 윤석영;이종영
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.508-511
    • /
    • 2001
  • 사파이어 단결정의 취성-연성전이에 대한 실험을 행하였다. 사파이어 단결정의 취성-연성전이온도는 변형율 3.3$\times$ $10^{-5}$/sec에서 $1000\pm$$25^{\circ}C$ 그리고 변형률 3.3$\times$$10^{-5}$/sec에서는 1100$\pm$26$^{\circ}C$이었다. 취성-연성전이모델을 이용하여 Prism Plane slip {1120} <1100> 전위속도의 활성화에너지를 계산하였으며, 그 결과 활성화에너지는 4.6$\pm$2.3eV의 범위를 가졌다. 이 활성화에너지는 에치-퍼트법을 이용하여 전위속도측정으로부터 구한 결과치 3.8eV와 유사하였다.

  • PDF

Irradiation-resistant Properties of Structurally Controlled Molybdenum Alloys Through a Multi-step Internal Nitriding

  • Nakahara, Takayuki;Okamoto, Yoshihisa;Nagae, Masahiro;Yoshio, Tetsuo;Kurishita, Hiroaki;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1161-1162
    • /
    • 2006
  • In order to overcome the recrystallization embrittlement and irradiation embrittlement of Mo, which are major problems for its fusion applications, internally nitrided Mo alloys were prepared by a novel multi-step internal nitriding. Neutron irradiation was performed in the Japan Material Testing Reactor (JMTR). After irradiation, nitrided Mo alloys exhibited $\iota$ ower ductile-brittle transition temperature than irradiated TZM. These results suggested that multi-step internal nitriding was effective to the improvement in the embrittlement by irradiation. Transmission electron microscope observation revealed that TiN particles precipitated by nitriding acted as a sink for irradiation-induced defects.

  • PDF

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가 (Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test)

  • 유호선;송문상;송기욱;류대영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

Evaluation of Mechanical Properties of RPV Clad by Small Punch Tests

  • Lee, Joo-Suk;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.574-585
    • /
    • 2002
  • The microstructural characteristics and its related mechanical properties of RPV cladding have been investigated using small punch (SP) tests. SA508 Cl.3 RPV steel plates were overlay cladded with the type ER309L welding consumables by submerged arc welding process. Although the RPV clad material had a small portion of 5 ferrite phase, it still showed the ductile to brittle transition behavior The transition temperature was determined by the SP test and it depended on the content of $\sigma$ phase, specimen size, and determination methods. The fracture appearance of SP specimen was changed from circumferential to radial cracking as test temperature became low, and below the transition temperature region, ER309L cladding usually fractured along the 6 ferrite by the low temperature failure of ferrite phase.

Polystyrene 의 Crazing 거동 특성 (Characterization of Crazing Behavior in Polystyrene)

  • 전대진;김석호;김완영
    • Elastomers and Composites
    • /
    • 제39권2호
    • /
    • pp.142-152
    • /
    • 2004
  • 서로 다른 두 종류의 폴리스타일렌(PS)을 injection 기계를 이용하여 인장 시편을 만들고, 온도와 인장 속도에 따른 crazing 거동 특성을 연구하기 위하여 다양한 시험을 하였다. 기계적물성은 craze 형성뿐만 아니라 다양한 시험 변수에 의해 영향을 받으며, brittle-ductile transition 이하의 온도에서의 인장 응력 및 최대 신율은 분자량, 인장 속도의 증가 및 온도의 감소에 따라 증가하며 craze의 수와 평균 길이 또한 증가한다. Crazing 응력도 동일한 형태로 증가함을 보여준다. 그러나, 이러한 특성은 인장 강도에 미치는 영향과 비교했을 때 보다 의존도는 상대적으로 낮다. Craze 형성과 성장에 필요한 시간으로 설명할 수 있는 crazing 응력과 인장 응력간의 차이는 분자량, 인장 속도에 따라 비례적으로 그리고, 온도가 감소함에 따라 증가함을 보여 준다. Crazing 은 ${\beta}$-relaxation 온도 근처에서 활성화된다. 이 온도에서는 crazing 응력이 급격하게 감소함을 나타낸다. 인장 평가시 craze 밀도가 적용된 응력에 따라 기하 급수적으로 증가되는데, 개시 단계에서는 craze는 서서히 형성되며, 일단 일정한 수만큼의 craze가 형성이 되면 craze 밀도가 급속도로 증가했다.

소형 샤르피 충격시험편을 이용한 1Cr-1Mo-0.25V강의 천이온도 평가 (Transition Temperature Evaluation of 1Cr-1Mo-0.25V Steel Using Miniaturized Charpy Impact Specimen)

  • 남승훈;김시천;이해무
    • 한국가스학회지
    • /
    • 제2권4호
    • /
    • pp.42-46
    • /
    • 1998
  • 소형 시험편 기술은 최소량의 재료를 사용하여 그 재료의 물리적인 거동을 특성화할 수 있기 때문에 산업설비로부터 많은 재료를 수집할 수 없는 경우에 유용한 방법이다. 본 연구에서 사용한 재료는 화력발전소 터빈로터 소재로 많이 사용되고 있는 1Cr-1Mo-0.25V강이었으며, $^630{\circ}C$에서 등온열화처리하여 5종류의 가속 열화 모사재를 만들었다. 충격시험에는 표준 시험편과 소형 시험편이 사용되었으며, 일부 소형 시험편에 소성 구속을 증가시키기 위해 측면흠을 만들어 넣었다. 표준 시험편과 소형 시험편의 충격특성을 비교하였으며 크기효과를 고찰하였고, 소형 시험편의 연성취성천이온도와 표준 시험편의 연성취성천이온도와의 상관관계를 만들었다. 따라서 소형 시험편의 충격시험결과로부터 표준 시험편의 충격특성을 추정하는 것이 가능하게 되었다.

  • PDF