• Title/Summary/Keyword: ductile damage

Search Result 169, Processing Time 0.02 seconds

An Evaluation of Tensile Design Criteria of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장설계기준 평가)

  • Suh Yong-Pyo;Jang Jung-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2005
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed to simulate the clack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results for real tensile capacity of cast-in-place anchor.

Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections

  • Llanes-Tizoc, Mario D.;Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Leal Graciano, Jesus M.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.469-485
    • /
    • 2019
  • A numerical investigation regarding local (${\mu}_L$) and story (${\mu}_S$) ductility demand evaluation of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF), is conducted in this study. The interior connections are modeled, firstly as perfectly pinned (PP), and then as semi-rigid (SR). Three models used in the SAC steel project, representing steel buildings of low-, mid-, and high-rise, are considered. The story ductility reduction factor ($R_{{\mu}S}$) as well as the ratio ($Q_{GL}$) of $R_{{\mu}S}$ to ${\mu}_L$ are calculated. ${\mu}_L$ and ${\mu}_S$, and consequently structural damage, at the PMRF are significant reduced when the usually neglected effect of SR connections is considered; average reductions larger than 40% are observed implying that the behavior of the models with SR connections is superior and that the ductility detailing of the PMRF doesn't need to be so stringent when SR connections are considered. $R_{{\mu}S}$ is approximately constant through height for low-rise buildings, but for the others it tends to increase with the story number contradicting the same proportion reduction assumed in the Equivalent Static Lateral Method (ESLM). It is implicitly assumed in IBC Code that the overall ductility reduction factor for ductile moment resisting frames is about 4; the results of this study show that this value is non-conservative for low-rise buildings but conservative for mid- and high-rise buildings implying that the ESLM fails evaluating the inelastic interstory demands. If local ductility capacity is stated as the basis for design, a value of 0.4 for $Q_{GL}$ seems to be reasonable for low- and medium-rise buildings.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.

Internal Structure and Movement History of the Keumwang Fault (금왕단층의 내부구조 및 단층발달사)

  • Kim, Man-Jae;Lee, Hee-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-230
    • /
    • 2016
  • Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System (개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동)

  • Oh, Min-Ho;Kim, Tae-Wan;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In order to strengthen RC structures, various strengthening methods have been used. Particularly, external tendon strengthening method is very popular method to strengthen damaged structures in terms of efficiency, ease, economics. In this study, improved anchorage elements using the lifting hole were proposed to strengthen PSC or RC girder without any damage. Two types of anchorage elements were proposed and these elements were applied on six RC beams. Also, three types of existing anchorage elements were applied on three RC beams. Otherwise, any anchorage element was not applied on one RC beam to used as a control beam. To analyse behavior of these elements, static load tests were carried out. Test variables were anchorage shapes, prestressing level on the steel bar and tendon profiles. Deflections, strains and modes of failure were recorded to examine the strengthening effects of the beams. Ductility index and tendon stress were analyzed by comparing cracking load, yielding load and ultimate load. As a result, proposed anchorage elements using lifting hole were superior to existing anchorage elements in terms of strengthening effect and furthermore, they showed ductile behavior based on energy method.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.