• Title/Summary/Keyword: ductile damage

Search Result 169, Processing Time 0.022 seconds

Numerical Modeling of Hydrogen Embrittlement-induced Ductile Fracture Using a Gurson-Cohesive Model (GCM) and Hydrogen Diffusion (Gurson-Cohesive Model(GCM)과 수소 확산 모델을 결합한 수소 취화 파괴 해석 기법)

  • Jihyuk Park;Nam-Su Huh;Kyoungsoo Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2024
  • Hydrogen embrittlement fracture poses a challenge in ensuring the structural integrity of materials exposed to hydrogen-rich environments. This study advances our comprehension of hydrogen-induced fracture through an integrated numerical modeling approach. In addition, it employs a ductile fracture model named the Gurson-cohesive model (GCM) and hydrogen diffusion analysis. GCM is employed as a fracture model that combines the Gurson model to illustrate the continuum damage evolution and the cohesive zone model to describe crack surface discontinuity and softening behavior. Moreover, porosity and stress triaxiality are considered as crack initiation criteria . A hydrogen diffusion analysis is also integrated with the GCM to account for hydrogen enhanced decohesion (HEDE) mechanisms and their subsequent impacts on crack initiation and propagation. This framework considers the influence of hydrogen on the softening behavior of the traction-separation relationship on the discontinuous crack surface. Parametric studies explore the sensitivity to diffusion properties and hydrogen-induced fracture properties. By combining numerical models of hydrogen diffusion and the ductile fracture model, this study provides an understanding of hydrogen-induced fracture and thereby contributes significantly to the ongoing efforts to design materials that are resilient to hydrogen embrittlement in practical engineering applications.

Finite Element Damage Analysis for Cast Stainless Steel (CF8M) Material Considering Variance in Experimental Data (Cast Stainless Steel (CF8M) 재료의 시험결과 분산을 고려한 유한요소 손상해석)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.769-776
    • /
    • 2012
  • The damage analysis method in this paper needs a material property and failure criteria. The material properties and the failure criteria could be easily obtained from the results of notched bar tensile tests carried out on other materials studied previously. However, for the cast stainless steel (CF8M) material in this paper, because of the variance in the results from notched bar tensile tests under the same conditions, the material property and the failure criteria could be obtained differently, depending on the analyzer. Therefore, a proper procedure that can confirm the material property and failure criteria are needed. In this work, the averaged material property was obtained from the notched bar with a 16-mm notch radius, and three failure criteria for CF8M material by finite element analysis were obtained. Applying the material property and the failure criteria, FE damage analysis for the J-R fracture toughness test was conducted. For validation, the simulated results were compared with the experimental results.

Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites (SiC입자강화 주조Al-Si복합재의 피로수명에 대한 인장평균변형률의 영향)

  • Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1970-1981
    • /
    • 1999
  • The low-cycle fatigue behaviour of a SiC-particulate-reinforced Al-Si cast alloy with two different volume fractions has been investigated from a series of strain-control led fatigue tests with zero and nonzero tensile mean strains. The composites including the unreinforced matrix alloy, exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. For the tensile mean strain tests, the initial high tensile mean stress relaxed to zero for the ductile Al-Si alloy, resulting in no influence of the tensile mean strain on the fatigue life of the matrix alloy. However, tensile mean strain for the composite caused tensile mean stresses and reduced fatigue life. The pronounced effects of mean strain on the low-cycle fatigue life of the composite compared to the unreinforced matrix alloy were attributed to the initial large prestrain and non-relaxing high tensile mean stress in the composite with very limited ductility and Cyclic plasticity. Fatigue damage parameter using strain energy, density efficiently accounted for the mean stress effects. Predicted fatigue life using the damage parameter correlated fairly well with the experimental life within a factor of 3. Also, the fatigue damage parameter indicated the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced matrix alloy.

Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements (음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구)

  • Ong, J.W.;Moon, S.I.;Jeong, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1993
  • Fracture behavior of pre-cracked compact tension specimens made of AISI 4130 steel was investigated using acoustic emission (AE) and ultrasonic C-scan measurements. While each specimen was loaded up to a certain level, various acoustic emission parameters were recorded together with the crack opening displacement (COD). An elastic-plastic finite element analysis was performed to calculate COD and the damage (plastic) zone size ahead of crack tip. Ultrasonic C-scans, in a pulse-echo, immersion mode, were done for mapping the damage zone size. The agreement between the finite element results and the measured COD was satisfactory. Based on AE results, the test specimens were found to show ductile behavior. The slope of the total ringdown counts vs. COD curve was useful to determine the crack initiation. The preliminary C-scan images showed evidence of changes in the amplitude of ultrasonic signal in the damaged region, and the shape and size of the damage zone matched qualitatively with the finite element results. A further work on the damage zone sizing was also pointed out.

  • PDF

Dynamic Behavior of Buried Pipelines Constructed by Domestic and USA Specifications (국내 및 미국 시방서에 따라 시공된 지중매설관의 동적거동)

  • Jeon, Sang-Soo;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Lifeline Damages induced by earthquake loading brings not only a structure damage but the communication problems by the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in USA and Japan, called as HAZUS (Hazard in US) and HERAS (Hazards Estimation and Restoration Aid System), respectively, have been established for the purpose of efficient responding to the earthquake hazard. Sufficient damage records are required to establish these systems. However, there are insufficient data set of damage records obtained from previous earthquakes in Korea. In this study, according to the construction specifications of the pipelines in both Korea and USA, the behavior of both ductile and brittle pipelines embedded in dense sand overlying various soils, such as clay, sand, and gravel were examined with respect to the pipeline characteristics under various earthquake loadings. The applicability of pipeline damage prediction used in HAZUS program to Korea has been investigated.

Effects of shot peening stand-off distance on electrochemical properties for surface modification of ALBC3 alloy (ALBC3 합금의 표면 개질을 위한 쇼트피닝 분사거리가 전기화학적 특성에 미치는 영향)

  • Han, Min-Su;Hyun, Koang-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.233-238
    • /
    • 2013
  • In the case of casting materials or ductile materials for marine equipment, it is common to employ a surface modification for achieving cost reduction and improvement in strength. In particular, aluminium bronze ALBC3 exhibits excellent corrosion resistance, and thus widely used for marine application. However, application of the material under high-velocity seawater flow may induce electrochemical corrosion damage and physical damage such as cavitation erosion, leading to shorter service life of equipment. In this study, surface modification was carried out on ALBC3 alloy for different shot peening stand-off distances, and the physical hardness and electrochemical characteristics before and after modification were investigated. The results in each case showed the hardness increase in comparison with non-peened specimen, and the maximum hardness improvement(50 %) was found in 10 cm of shot-peening stand-off distance. It is observed that the electrochemical characteristics were irrelevant to application of shot peening.

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part II: Theoretical Backgrounds of Fracture (조선 해양 구조물용 강재의 소성 및 파단 특성 II: 파단의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.92-100
    • /
    • 2011
  • The main goal of this paper is to provide the theoretical background for the fracture phenomena in marine structural steels. In this paper, various fracture criteria are theoretically investigated: shear failure criteria with constant failure strain and stress triaxiality-dependent failure strain (piecewise failure and Johnson-Cook criteria), forming limit curve failure criterion, micromechanical porosity failure criterion, and continuum damage mechanics failure criterion. It is obvious that stress triaxiality is a very important index to determine the failure phenomenon for ductile materials. Assuming a piecewise failure strain curve as a function of stress triaxiality, the numerical results coincide well with the test results for smooth and notched specimens, where low and high stress triaxialities are observed. Therefore, it is proved that a failure criterion with reliable material constants presents a plastic deformation process, as well as fracture initiation and evolution.

Accumulation of wind induced damage on bilinear SDOF systems

  • Hong, H.P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.145-158
    • /
    • 2004
  • The evaluation of the accumulation of permanent set for inelastic structures due to wind action is important in establishing a criterion to select a reduced design wind load and in incorporating the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the method of Newmark for artificially generated time history of wind speed. Simulation results indicate that the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The scatter associated with the accumulation of the permanent set is very significant. The consideration of the postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield strength to the expected peak response is small. The results also show that the ductility demand due to the wind action over a period of one hour for flexible structures can be much less than that for rigid structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak response caused by the fluctuating wind.

Optimization Analysis for Realization of Vertical Wall in the Punchless Piercing Process (무 펀치 피어싱 공정에서 직벽 구현을 위한 최적화 해석)

  • Lee, Sang-Wook;Um, Tai-Joon;Joo, Young-Cheol;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • In this work, optimization analysis has been accomplished to find important process factors for realization of vertical wall around holes punched by the punchless piercing process. Taguchi method was used for optimization analysis. Lemaitre damage theory, one of the ductile fracture models, was also adopted to simulate numerically formation of vertical wall. From the results of analysis the most influencing factor that affects the vertical wall has been revealed to be 'Corner Radius of Die'.