• Title/Summary/Keyword: duct hole

Search Result 29, Processing Time 0.022 seconds

Analysis of Ventilation Efficiency by Duct System in Pig House (돈사 덕트 환기시스템의 효율 분석)

  • Song, J.I.;Yoo, Y.H.;Lee, D.S.;Choi, H.C.;Kang, H.S.;Kim, T.I.;Jeon, B.S.;Park, C.H.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • The experiment was carried out to investigate the optimal air velocity for improving the ventilation efficiency of duct ventilation system used in Korean swine building. The results are followed ; In 2.2 m height of duct, the air velocity of hole was 5.0 m/s as the over level of recommendation. In different hole interval, the air velocity was various of 4.6${\sim}$11.6 m/s in narrow hole interval, 5.4${\sim}$10.9 m/s in broad hole interval. But the air velocity was 6.6${\sim}$7.7 m/s in duct system pierced hole with equal interval, and it was equal velocity in different parts of duct in this hole interval.

  • PDF

Effects of No Stiffness Inside Unbonded Tendon Ducts on the Behavior of Prestressed Concrete Containment Vessels

  • Noh, Sang-Hoon;Kwak, Hyo-Gyong;Jung, Raeyoung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.805-819
    • /
    • 2016
  • The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

Reduction of Noise and Input Power in Fuel Cell Blower by Controlling Flow Path (연료전지 블로워의 유로 크기에 따른 소비전력과 소음저감 방법)

  • Tak, Bong-Yeol;Kim, Chan-Kyu;Lee, So-A;Jang, Choon-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • This paper describes performance enhancement of a fuel cell's blower by controlling flow path. Different duct diameter at the inlet and outlet of the blower is selected for reducing blower noise level and input power. Hole diameter and the number of hole at the check valve are tested to reduce the input power of the blower. Two types of blower, fuel pressurized blower and cathode blower, are considered in the present study. Throughout experimental measurements of the test blowers, it is found that duct diameter is effective to reduce noise level and input power in the fuel cell blower. Noise reduction due to the optimal duct diameter at the outlet is more effective when flow rate is relatively large. That is, cathode blower has larger noise reduction compared to fuel pressurized blower because of larger flower rate. Input power of the blower can be reduced by controlling the hole diameter and the number of hole at the check valve.

  • PDF

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

A Numerical analysis on the pressure drop of the flow field past a two-staged orifice in a rectangular duct (사각덕트 내 이단 오리피스를 지나는 유동의 압력강하에 대한 수치해석)

  • Song, Woo-Yeol;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2747-2752
    • /
    • 2007
  • A numerical study has been performed on the flow past a two-staged orifice in a rectangular duct. The flow field including the recirculation region behind the orifice was investigated and the pressure drop was calculated. Water was used as a working fluid and the flow was treated as the turbulent flow, of which the Raynolds number was 6000. The main parameters for the pressure drop and the recirculation region were the orifice's inclined angle against the duct, the interval between two orifices, the shape of the orifice's hole having the same area, and the change of the hole position at the same interval. The variation of the flow field was investigated with each parameter. Consequently, it was found that the most dominant parameter influencing the drop of the pressure was the change of the hole position at the same interval between orifices. Especially when the interval between orifices was narrow and the relative position the holes was changed, its effect to the flow field was shown most drastically as a result of this study. The SIMPLER algorithm with FLUENT code was employed to analyze the flow field.

  • PDF

FE analyses and prediction of bursting forces in post-tensioned anchorage zone

  • Kim, Joung Rae;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.75-85
    • /
    • 2018
  • To improve the design equation for the evaluation of the bursting force in the post-tensioned anchorage zone, this paper presents the analyses and design of the post-tensioned (PT) anchorage zone on the basis of three dimensional (3D) finite element (FE) analyses. The structural behavior was investigated through linear elastic finite element analyses upon consideration of the change in design parameters such as the bearing plate size, the eccentricity, and the tendon inclination. Moreover, consideration of the duct hole, which causes an increase of the bursting stress with a change in its distribution along the anchorage zone as well, is emphasized. Since that an exact prediction of the bursting force is the primary interest in design practice, additional parametric analyses are carried out to evaluate the relative contribution of all design parameters in determining the bursting force, and a comparison with the design guidelines mentioned in AASHTO-LRFD has been provided. Finally, an improved design guideline that takes into account the influence by the duct hole is suggested.

Design equation to evaluate bursting forces at the end zone of post-tensioned members

  • Kim, Joung Rae;Kwak, Hyo-Gyoung;Kim, Byung-Suk
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.423-436
    • /
    • 2019
  • Design equations to evaluate the bursting force in a post-tensioned anchorage zone have been introduced in many design codes, and one equation in AASHTO LRFD is widely used. However, this equation may not determine the bursting force exactly because it was designed on the basis of two-dimensional numerical analyses without considering various design parameters such as the duct hole and shape of the bearing plate. To improve the design equation, modification of the AASHTO LRFD design equation was considered. The behavior of the anchorage zone was investigated using three-dimensional linear elastic finite element analysis with design parameters such as bearing plate size and diameter of sheath hole. Upon the suggestion of a modified design equation for evaluating the bursting force in an anchorage block with a rectangular anchorage plate (Kim and Kwak 2018), additional influences of design parameters that could affect the evaluation of bursting force were investigated. An improved equation was introduced for determining the bursting force in an anchorage block with a circular anchorage plate, using the same procedure introduced in the design equation for an anchorage block with a rectangular anchorage plate. The validity of the introduced design equation was confirmed by comparison with AASHTO LRFD.

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

Characteristics of Insertion Loss of Adhesive Tapes to Reduce Noise through Small Opening Hole (미세한 공혈을 통한 소음의 저감을 위한 접착 테이프 별 삽입손실 특성)

  • Yong Thung Cho
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.232-237
    • /
    • 2024
  • Adhesive tapes can be conveniently used for various applications by combination of materials requiring diverse mechanical strength and specific adhesives. Duct tape is usually readily available and one of the most widely used adhesive tapes. Duct tapes are composite materials with good mechanical strength consisted of fiber material, which is different from other tapes. In addition, electrical insulation tapes are used for very long period of time for insulating cables, and are also used for reinforcement of mechanical strength and increasing damping of cable in practice. Recently, variety of foam tapes and double-sided tapes are widely used in diverse applications. However, there is no previous work readily available clearly illustrating noise isolation performance of tapes. In present work, noise isolation performance of tapes is presented by measurement of insertion loss of variety of tapes on a small hole. Double-side foam tapes presented the best noise isolation performance among adhesive tapes measured in present work.

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (I) - Effects of Blowing Ratio and Reynolds Number - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (I) - 분사비 및 레이놀즈 수 효과 -)

  • Kang, Seung-Goo;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.927-936
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a film cooling hole of square cross-section for various blowing ratios and Reynolds numbers. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. A duct flow enters into a film cooling hole in a cross-direction. For the film cooling hole with square cross-section, it is observed that the reattachment of separated flow and the vortices within the hole enhance considerably the heat/mass transfer around the hole entrance region. The heat/mass transfer on the leading edge side of hole exit region increases as the blowing ratios decrease because the main flow induces a secondary vortex. Heat/mass transfer patterns within the square film cooling hole are changed little with the various Reynolds numbers.