• Title/Summary/Keyword: dual-core

Search Result 239, Processing Time 0.033 seconds

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

A 200-MHZ@2.5-V Dual-Mode Multiplier for Single / Double -Precision Multiplications (단정도/배정도 승산을 위한 200-MHZ@2.5-V 이중 모드 승산기)

  • 이종남;박종화;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1143-1150
    • /
    • 2000
  • A dual-mode multiplier (DMM) that performs single- and double-precision multiplications has been designed using a $0.25-\mum$ 5-metal CMOS technology. An algorithm for efficiently implementing double-precision multiplication with a single-precision multiplier was proposed, which is based on partitioning double-precision multiplication into four single-precision sub-multiplications and computing them with sequential accumulations. When compared with conventional double-precision multipliers, our approach reduces the hardware complexity by about one third resulting in small silicon area and low-power dissipation at the expense of increased latency and throughput cycles. The DMM consists of a $28-b\times28-b$ single-precision multiplier designed using radix-4 Booth receding and redundant binary (RB) arithmetic, an accumulator and a simple control logic for mode selection. It contains about 25,000 transistors on the area of about $0.77\times0.40-m^2$. The HSPICE simulation results show that the DMM core can safely operate with 200-MHZ clock at 2.5-V, and its estimated power dissipation is about 130-㎽ at double-precision mode.

  • PDF

A Study on the Activation of Dual Use Technology Program (민.군겸용기술사업 활성화 방안 연구)

  • Kim, Chul-Whan;Choi, Eun-Ho;Heo, Whan
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.1
    • /
    • pp.13-35
    • /
    • 2006
  • This study aims to propose alternative suggestions for practical and efficient implementation of Dual Use Technology Programs(CUTP) in Korea which can strengthen both national security and industrial competitiveness. DUTP of Korea has suffered from inefficiency and inactivity. This study analyzes the Inefficiency and negative factors of DUTP of Korea by examining the previous cases of the advanced countries. It also examines individual problems of DUTP carefully and attempts to derive alternative solutions to improve the current situation. First, a global government plan should be made considering Korea's weapon system and Korea's industrial characteristics. Second, DUTP should begin to develop core technology in connection with technology level evaluation and technology exchange project should establish a comprehensive information network system which links any civilian and military technology data. Third, technology transfer project should be promoted by utilizing cyber technology exchange market and military defense venture center. Fourth, standardization project should be expanded by establishing a national standard information system.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Resolving Memory Bottlenecks in Hardware Accelerators with Data Prefetch

  • Hyein Lee;Jinoo Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.1-12
    • /
    • 2024
  • Deep learning with faster and more accurate results requires large amounts of storage space and large computations. Accordingly, many studies are using hardware accelerators for quick and accurate calculations. However, the performance bottleneck is due to data movement between the hardware accelerators and the CPU. In this paper, we propose a data prefetch strategy that can efficiently reduce such operational bottlenecks. The core idea of the data prefetch strategy is to predict the data needed for the next task and upload it to local memory while the hardware accelerator (Matrix Multiplication Unit, MMU) performs a task. This strategy can be enhanced by using a dual buffer to perform read and write operations simultaneously. This reduces latency and execution time of data transfer. Through simulations, we demonstrate a 24% improvement in the performance of hardware accelerators by maximizing parallel processing with dual buffers and bottlenecks between memories with data prefetch.

AMBIDEBTER Nuclear Complex - A Credible Option for Future Nuclear Energy Applications (AMBIDEXTER 원자력 복합체 - 신뢰성 있는 미래 원자력에너지 이용 방안)

  • 오세기;정근모
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.235-242
    • /
    • 1998
  • Aiming at one of decisive alternatives for long term aspect of nuclear power concerns, an integral and closed nuclear system, AMBIDEXTER (Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and TEst Reactor) concept is under development. The AMBIDEXTER complex essentially comprises two mutually independent loops of the radiation/material transport and the heat/energy conversion, centered at the integrated reactor assembly, which enables one to utilize maximum benefits of nuclear energy under minimum risks of nuclear radiation. And it provides precious radioisotopes and radiation sources from its waste stream. Also the reactor operates at very low level of fission products inventory throughout its lifetime. The nuclear and thermalhydraulic characteristics of the molten TH/$^{233}$ U fuel salt extend the capability of the self-sustaining AMBIDEXTER fuel cycle to enhance resource security and safeguard transparency. The reactor system is consisted of a single component module of the core, heat exchangers and recirculation pumps with neither pipe connections nor active valves in between, which will significantly improve inherent features of nuclear safety. States of the core technologies associated with designing and developing the AMBIDEXTER concept are mostly available in commercialized form and thus demonstration of integral aspects of the concept should be the prime area in future R&D programs.

  • PDF

Interfacial and Flow Properties of Latices for Paper Coating (종이 도공용 라텍스의 계면(界面) 및 유동특성(流動特性)에 관한 연구(硏究))

  • Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The flow properties of binder latices for paper coating were investigated, together with dynamic viscoelastic properties of latex films and electron micrographs of latices, under various conditions. The amphoteric latex, binder pigment latex and anionic latex were used in this work. The amphoteric latex has both anionic and cationic functional group on its surface. The binder-pigment with a core-shell structure has dual functions : plastic pigment and binder. The low shear viscosity of binder latices and clay slurry were measured with Brookfield vis cometer. At low-shear rates. the viscosity decreased with increasing particle size of latex. On the amphoteric latex surface, the carboxyl groups are assumed to be fully dissociated over the region of pH 9~12, but the density of negative groups seems to be increased because of the gradual decrease in the degree of dissociation of amino groups. Since the apparent particle size of latex increases with surface charge, the electroviscous effect can be observed. On the anionic latex surface, the charge density is assumed to be nearly constant above pH 8. However, below pH 8 the coagulation of particles could be observed probably because of the decrease in the charge density.

  • PDF

Improving Energy Self-sufficiency in Municipal Wastewater Treatment Plant using Renewable Energy Production (능동적 신재생에너지 생산을 통한 하수처리장 에너지자립화 향상)

  • Kang, Ji-Hoon;Chae, Kyu-Jung;Kim, Dong-Soo;Yang, Hee-Jung;An, Yeong-Seop;Kim, Won-Kyoung;Kim, Jeong-Hyeon;Park, Dong-Eul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.643-643
    • /
    • 2012
  • Increasing energy prices and growing concerns about global warming address the need to improve energy self-sufficiency in many industrial and municipal sectors. Wastewater treatment plants (WWTPs) are representative of energy-consuming facilities in Korea, accounting for 5% of national energy consumption. We present renewable energy technologies and energy self-sufficiency scenarios in a municipal WWTP ($30,000m^3d^{-1}$) located in Yongin, South Korea. By employing photovoltaics (PV, 135 kW), small hydropower turbine (10 kW), and thermal energy from treated effluent (25 RT: refrigeration ton) within the WWTP, a total of 142 tonne of oil equivalent (toe) of energy was estimated to be generated, accounting for $365ton\;CO_2\;yr^{-1}$ of greenhouse gas emission reduction. Core renewable technologies under consideration include 1) hybrid solar PV system consisting of fixed PV, dual-axis PV, and building integrated PV, 2) low-head small hydropower plant specifically designed for treated effluent, 3) effluent heat recovery system for heating and air conditioning. In addition to these core technologies, smart operation and management scheme will be presented for enhancing overall energy savings and distribution within the WWTP.

  • PDF

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.