• 제목/요약/키워드: dual reporter gene

검색결과 37건 처리시간 0.019초

miR-375 down-regulation of the rearranged L-myc fusion and hypoxia-induced gene domain protein 1A genes and effects on Sertoli cell proliferation

  • Guo, Jia;Liu, Xin;Yang, Yuwei;Liang, Mengdi;Bai, Chunyan;Zhao, Zhihui;Sun, Boxing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1103-1109
    • /
    • 2018
  • Objective: This study aimed to screen and identify the target genes of miR-375 in pig Sertoli (ST) cells and to elucidate the effect of miR-375 on the proliferation of ST cells. Methods: In this study, bioinformatics software was used to predict and verify miR-375 target genes. Quantitative polymerase chain reaction (PCR) was used to detect the relationship between miR-375 and its target genes in ST cells. Enzyme-linked immunosorbent assay (ELISA) of rearranged L-myc fusion (RLF) and hypoxia-induced gene domain protein 1A (HIGD1A) was performed on porcine ST cells, which were transfected with a miR-375 mimics and inhibitor to verify the results. Dual luciferase reporter gene assays were performed to assess the interactions among miR-375, RLF, and HIGD1A. The effect of miR-375 on the proliferation of ST cells was analyzed by CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). Results: Five possible target genes of miR-375, including RLF, HIGD1A, colorectal cancer associated 2, POU class 3 homeobox 1, and WW domain binding protein 1 like, were found. The results of quantitative PCR suggested that mRNA expression of RLF and HIGD1A had a negative correlation with miR-375, indicating that RLF and HIGD1A are likely the target genes of miR-375. The ELISA results revealed that RLF and HIGD1A were negatively correlated with the miR-375 protein level. The luminescence results for the miR-375 group cotransfected with wild-type RLF and HIGD1A vector were significantly lower than those of the miR-375 group co-transfected with the blank vector or mutant RLF and HIGD1A vectors. The present findings suggest that RLF and HIGD1A are target genes of miR-375 and that miR-375 inhibits ST cell proliferation according to MTS analysis. Conclusion: It was speculated that miR-375 affects cell proliferation through its target genes, which play an important role in the development of testicular tissue.

다약제내성 암세포에서 shMDR과 Sodium/Iodide Symporter 유전자의 이입에 의한 Doxorubicin 감수성과 방사성옥소 섭취의 증가 (Increases in Doxorubicin Sensitivity and Radioiodide Uptake by Transfecting shMDR and Sodium/Iodide Symporter Gene in Cancer Cells Expressing Multidrug Resistance)

  • 안손주;이용진;이유라;최창익;이상우;유정수;안병철;이인규;이재태
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권3호
    • /
    • pp.209-217
    • /
    • 2007
  • 목적: mdr1유전자를 표적으로 한 short hairpin RNA (shMDR)는 다약재내성을 나타내는 암세포에서 효과적으로 mdr1 유전자의 발현을 억제 할 수 있고 sodium iodide symporter (NIS)는 유전자 치료와 리포터로의 기능을 동시에 나타낼 수 있다. 이 연구에서는 사람 대장암세포(HCT15)에 shMDR과 NIS를 동시에 이입하고 Tc-99m sestamibi와 I-125 섭취를 측정하였고 doxorubicin과 I-131 치료효과도 관찰하였다. 대상 및 방법: 사람 태아 신장 세포주(Human Embryonic Kidney cells; HEK293)에 liposome 시약으로 shMDR을 이입하고 RT-PCR과 western blot으로 분석하였다. shMDR와 NIS 유전자가 발현하는 adenovirus를 만들고 HCT15 세포에 이입 후 48시간에 shMDR에 의한 Pgp의 기능 억제를 확인하기위해 Tc-99m sestamibi 섭취와 doxorubicin 세포독성을 측정하였다. 또한 NIS유전자의 기능을 확인 하기위해 I-125 섭취와 I-131 세포독성도 확인하였다. 결과: shMDR이 이입 된 HEK293 세포에서 mdr1의 mRNA와 Pgp의 발현이 각각 75%, 80% 감소하였다. NIS 유전자가 발현하는 adenovirus를 HCT15 세포에 이입하고 NIS 유전자 발현을 확인 한 결과 대조군에 비해 월등히 높게 발현하였다. Ad-shMDR 300 MOI, Ad-shMDR 300 MOI 와 Ad-NIS 10 MOI를 처리한 경우 Tc-99m sestamibi의 섭취가 대조군보다 1.5배 정도 증가하였다. HCT15 세포에 Ad-NIS 10 MOI를 감염시킨 경우 I-125 섭취가 대조군에 비해 25배 이상 증가였다. 또한 Ad-shMDR와 Ad-NIS를 동시 감염 시켰을 경우 doxorubicin의 세포 독성이 증가하여 나타났고 Ad-NIS 20 MOI를 감염시켰을 때 I-131에 의한 세포독성이 대조군보다 증가하였다. 결론: 세포에 shMDR의 이입으로 mdr1 유전자의 발현이 억제되고 Tc-99m sestamibi의 섭취와 doxorubicin의 세포독성이 증가하였으며 NIS 유전자의 이입으로 I-125의 섭취와 I-131의 세포독성이 증가하였다. 다약제내성세포에 shMDR와 NIS 유전자의 동시 이입은 doxorubicin과 방사성 옥소의 이중치료 효과를 높일 수 있을 것으로 본다.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

MicroRNA-576-3p Inhibits Proliferation in Bladder Cancer Cells by Targeting Cyclin D1

  • Liang, Zhen;Li, Shiqi;Xu, Xin;Xu, Xianglai;Wang, Xiao;Wu, Jian;Zhu, Yi;Hu, Zhenghui;Lin, Yiwei;Mao, Yeqing;Chen, Hong;Luo, Jindan;Liu, Ben;Zheng, Xiangyi;Xie, Liping
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.130-137
    • /
    • 2015
  • MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3'-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3'-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.

Bta-miR-365-3p-targeted FK506-binding protein 5 participates in the AMPK/mTOR signaling pathway in the regulation of preadipocyte differentiation in cattle

  • Mengdi Chen;Congcong Zhang;Zewen Wu;Siwei Guo;Wenfa Lv;Jixuan Song;Beibei Hao;Jinhui Bai;Xinxin Zhang;Hongyan Xu;Guangjun Xia
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1156-1167
    • /
    • 2024
  • Objective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. Methods: We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. Results: In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dual-luciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. Conclusion: In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.

N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats

  • Ronghuan Yin;Ronglan Yin;Man Bai;Yixing Fan;Zeying Wang;Yubo Zhu;Qi Zhang;Taiyu Hui;Jincheng Shen;Siyu Feng;Wenlin Bai
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.555-569
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. Methods: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6A-deficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. Results: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHF-stem cells. We further demonstrated that the internal m6A modification within circRNA-ZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNA-ZNF638. Conclusion: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.