• Title/Summary/Keyword: dual problems

Search Result 496, Processing Time 0.027 seconds

Controller Design of Piezoelectric Milliactuator for Dual Stage System (이중 구동 시스템을 위한 압전 밀리엑추에이터의 제어기 설계)

  • Eo-Jin, Hong;No-Cheol, Park;Hyun-Seok, Yang;Young-Pil, Park
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.965-971
    • /
    • 2003
  • To reach high areal density, less track pitch is expected and more servo bandwidth is required. One approach to overcoming the problem is by using dual stage servo system. For this system. we have suggested new milliactuator based on the shear mode of piezoelectric elements to drive the head suspension assembly. In this paper, we introduce milliactuator and controller design method, PQ method. PQ method reduces the controller design problem for DISO (dual-input/single-output) systems to two standard controller design problems for SISO ( single-input/single-output) problems. The first part of PQ method directly addresses the issue of actuator output contribution, and the second part allows the use of traditional loop shaping to achieve the overall system performance. This paper shows how to employ the PQ method to meet aggressive close-loop performance specifications for a disk drive system with a VCM and piezoelectric milliactuator.

Mediating Effects of Mental Health and Sleep Problems in the Relationship between Fears of COVID-19 and Preventive Practices (코로나19 두려움과 예방실천 간의 관계에서 정신건강과 수면 문제의 매개효과)

  • Shin, Sun-Hwa
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.337-347
    • /
    • 2021
  • This study sought to determine whether there were mediating effects on both mental health and sleep problems as induced by COVID-19 fears and its effects on preventive practices. The participants were 310 adults living in the Seoul/Gyeonggi Province. For data collection, an online survey was conducted using a semi-structured questionnaire. The collected data were analyzed using PROCESS Macro (Model 6) to validate the dual mediating effects. This study analyzed the direct effects of COVID-19 fears on the mental health problems, sleep problems and preventive practices. Both mental health and sleep problems had dual mediating effects in the influence of COVID-19 fears on preventive practices. Preventive practice has shown that the mediated effects of mental health problems play a strong role in instances when COVID-19 fears increase.

A Flexible Programmable Memory BIST for Embedded Single-Port Memory and Dual-Port Memory

  • Park, Youngkyu;Kim, Hong-Sik;Choi, Inhyuk;Kang, Sungho
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.808-818
    • /
    • 2013
  • Programmable memory built-in self-test (PMBIST) is an attractive approach for testing embedded memory. However, the main difficulties of the previous works are the large area overhead and low flexibility. To overcome these problems, a new flexible PMBIST (FPMBIST) architecture that can test both single-port memory and dual-port memory using various test algorithms is proposed. In the FPMBIST, a new instruction set is developed to minimize the FPMBIST area overhead and to maximize the flexibility. In addition, FPMBIST includes a diagnostic scheme that can improve the yield by supporting three types of diagnostic methods for repair and diagnosis. The experiment results show that the proposed FPMBIST has small area overhead despite the fact that it supports various test algorithms, thus having high flexibility.

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

Time accurate method for low speed compressible flows using dual time stepping and preconditioning procedure (이중 시간전진법과 Preconditioning을 이용한 저속의 압축성유동에 대한 비정상 해석기법)

  • Choe, Yun-Ho;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.788-802
    • /
    • 1998
  • A numerical method using dual time stepping and preconditioning procedure for efficient computations of unsteady low speed compressible flow problems is developed. The time-derivative preconditioning method which is valid at low speed flow conditions cannot maintain temporal accuracy because of the modification of the time-derivative term in Navier-Stokes equations. The dual time stepping procedure is incorporated to enable the time accurate computations and this procedure introduces a pseudo-time derivative in addition to the physical time derivative. At a given physical time, an inner iteration can be carried out until a steady state in pseudo-time is achieved. This will effectively yield a time accurate solution. Computational capabilities of the above algorithm are demonstrated through computation of a variety of practical fluid flows and it is shown that the algorithms is efficient in the essentially incompressible flows and low Mach number compressible flows with heat source.

A New Current Control of DC Motor using Dual Converter (Dual Converter에 의한 DC MOTOR의 새로운 전류제어)

  • Ji, Jun-Keun;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.564-567
    • /
    • 1991
  • In this paper a predictive current control strategy is adopted in the D.C motor drive using dual converter. It is a kind of feedforward control working without overshoot within very short settling time. The difference to the well-known PI current control lies in considering the computer's ability of pre-calcurating the converter's behavior. By simulation it is shown that the predictive current control solve the problems of optimal PI current control, such as overshoot and settling time.

  • PDF

A primal-dual log barrier algorithm of interior point methods for linear programming (선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법)

  • 정호원
    • Korean Management Science Review
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

A Study on the Power Supply using Soft-switching Dual TTFC Pre-regulator (소프트 스위칭 Dual TTFC Pre-regulator를 사용한 전원장치에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Eom, Tae-Min;Lee, Kyu-Hoon;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1009_1010
    • /
    • 2009
  • This paper presents a power supply system with pre-regulator using zero voltage switching (ZVS) interleaving two-transistor forward converter for high input voltage and high power application. A SMPS has a advantage that a good efficiency, small size and light weight but has a noise problem. A linear power supply system has a advantage that a good stability, low ripple and noise but has a disadvantage that a big size, low efficiency and heat problem. To alleviate these problems, we propose an power supply system using dual ZVS interleaving two-transistor forward pre-regulator. The proposed converter is verified on a 1kW, 50kHz experimental prototype.

  • PDF

Dual-Depot Heterogeneous Vehicle Routing Problem Considering Reverse Logistics (역물류 환경을 고려한 복수차고지 다용량 차량경로문제)

  • Jung, Young-Hoon;Kim, Gak-Gyu;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.89-99
    • /
    • 2012
  • In this paper, we deal with the dual-depot heterogeneous vehicle routing problem with simultaneous delivery and pick up(DH-VRPSDP) in reverse logistics. The DH-VRPSDP is a problem of designing vehicle routes in a day of given vehicle to minimize the sum of fixed cost and variable cost over the planning horizon. Each customer can be visited only once according to the service combinations of that customer. Due to the complexity of the problem, we suggest a heuristic algorithm in which an initial solution is obtained by changing the customer and the vehicle simultaneously and then it is improved. A performance of the proposed algorithm was compared to both well-known results and new test problems.

Approximate discrete variable optimization of plate structures using dual methods

  • Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.359-372
    • /
    • 1995
  • This study presents an efficient method for optimum design of plate and shell structures, when the design variables are continuous or discrete. Both sizing and shape design variables are considered. First the structural responses such as element forces are approximated in terms of some intermediate variables. By substituting these approximate relations into the original design problem, an explicit nonlinear approximate design task with high quality approximation is achieved. This problem with continuous variables, can be solved by means of numerical optimization techniques very efficiently, the results of which are then used for discrete variable optimization. Now, the approximate problem is converted into a sequence of second level approximation problems of separable form and each of which is solved by a dual strategy with discrete design variables. The approach is efficient in terms of the number of required structural analyses, as well as the overall computational cost of optimization. Examples are offered and compared with other methods to demonstrate the features of the proposed method.