• Title/Summary/Keyword: dual mode resonator

Search Result 50, Processing Time 0.025 seconds

Harmonic Suppressed Dual-Band Bandpass Filter with Independently Tunable Center Frequencies and Bandwidths

  • Chaudhary, Girdhari;Jeong, Yongchae;Lim, Jongsik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.93-103
    • /
    • 2013
  • This paper presented a novel approach for the design of a tunable dual-band bandpass filter (BPF) with independently tunable passband center frequencies and bandwidths. The newly proposed dual-band filter principally comprised two dual-mode single band filters using common input/output lines. Each single BPF was realized using a varactor-loaded transmission line resonator. To suppress the harmonics over a broad bandwidth, a defected ground structure was used at the input/output feeding lines. From the experimental results, it was found that the proposed filter exhibited the first passband center frequency tunable range from 1.48 to 1.8 GHz with a 3-dB fractional bandwidth (FBW) variation from 5.76% to 8.55%, while the second passband center's frequency tunable range was 2.40 to 2.88 GHz with a 3-dB FBW variation from 8.28% to 12.42%. The measured results of the proposed filters showed a rejection level of 19 dB up to more than 10 times the highest center frequency of the first passband.

Microstrip Resonator for Simultaneous Application to Filter and Antenna (여파기와 안테나로 동시 적용이 가능한 마이크로스트립 공진기)

  • Sung, Young-Je;Kim, Duck-Hwan;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.475-485
    • /
    • 2010
  • This paper proposes a novel concept for a microstrip resonator that can function as a filter and as an antenna at the same time. The proposed structure consists of an outer ring, an open loop-type inner ring, a circular patch, and three ports. The frequencies where the proposed structure works as a filter and as an antenna, respectively, are determined primarily by the radius of the inner ring and the circular patch. The measured results show that, when the microstrip resonator operates as a filtering device, this filter has about 15.1 % bandwidth at the center frequency of 0.63 GHz and a minimum insertion loss of 1.5 dB within passband. There are three transmission zeros at 0.52 GHz, 1.14 GHz, and 2.22 GHz. In the upper stopband, cross coupling - taking place at the stub of the outer ring - and the open loop-type inner ring produce one transmission zero each. The circular patch generates the dual-mode property of the filter and another transmission zero, whose location can be easily adjusted by altering the size of the circular patch. The proposed structure works as an antenna at 2.7 GHz, showing a gain of 3.8 dBi. Compared to a conventional patch antenna, the proposed structure has a similar antenna gain. At the resonant frequencies of the filter and the antenna, high isolation(less than -25 dB) between the filter port and the antenna port can be obtained.

Design of Bandpass Filters using Microstrip Line PBG (마이크로스트립 PBG를 이용한 대역통과 여파기 설계)

  • Lee, Chang-On;Kim, Sang-Tae;Shin, Chull-Chai
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.361-365
    • /
    • 2003
  • In this paper, we proposed the effective serial connection methodology of PBG resonator with defect mode. We use the big difference of impedance ratio in connection region, for example dual PBG, for serial connection. This method reduces the PBG cells and is able to control the pole of bandpass filters. This result in flexibility in design of bandpass filter. Our PBG bandpass filter is modeled by using the ideal transmission line model. This model is very easy, fast, and effective for PBG structure.

  • PDF

A study on the small duplexer using dual-mode filter for ku-band satellite communications (이중 모드 필터를 이용한 Ku-band 위성 통신용 소형 Duplexer 에 관한 연구)

  • 유도형;유경완;김상철;이주열;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1048-1058
    • /
    • 1996
  • In this paper, a small duplexer is designed and implemented using a H-plane T-junction and Transmitting/Geceiving filte with a dual mode cavity resonator for Ku-band. Transmitting(TX) filter is designed at center frequeny 12.5 GHz and Receiving(RX) filter, at center frequency 14.5 GHz. Both filters have a 100 MHz bandwidth. This duplexer is reduced to about 40% by the conventional duplexer of cavity bandpass filter structure in size. Operating characteristics of duplexer is optimized in order not to distors matching characteristics of each filter when interfaced to a H-plane T-junction. Consequently, the responses of filter with H-plane T-junction nearly coincide with that of filter itself.

  • PDF

A Study on Design of Dual-Bandpass Filters for Wireless LAN (무선 LAN용 이중 대역통과 필터의 설계에 관한 연구)

  • Jeon, Mi-Hwa;Kim, Eun-Mi;Kim, Dong-Il;Jeon, Joong-Sung;Kim, Min-Jung
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Ship's wireless LAN was in the limelight as equipment of ease, cost reduction, various func tion al i ty. In the paper, a dual-bandpass filter for wireless LAN has proposed, which was designed by using dual-mode square loop resonator with square patch in compliance with 2.4 GHz and 5 GHz band of wireless LAN. The dual-bandpass filter could be designed by adjusting sizes of one perturbation element and three of reference elements in compliance with the frequency bands of 2.4 GHz and 5.8 GHz, Furthermore, new dual-bandpass filter was also designed by adjusting stopband of using open stubs in compliance with the frequency bands of 2.4 GHz and 5.2 GHz. The measured results for the fabricated dual-bandpass filters agreed well with the simulated ones, and hence, it was confirmed that the proposed design method is valid.

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations

  • Chebbara, F.;Fortaki, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.314-319
    • /
    • 2015
  • The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.

Recent Advances in Filter Topologies and Realizations for Satellite Communications

  • Fahmi, Mohamed M.;Ruiz-Cruz, Jorge A.;Mansour, Rafaat R.;Zaki, Kawthar A.
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.625-632
    • /
    • 2011
  • This paper presents an overview of recent advances in radio frequency and microwave filter topologies for satellite communication systems. Many types of filters have been developed during the last years in order to satisfy the demands of modern applications in both terrestrial systems and onboard spacecrafts, leading to a great variety of aspects such as transfer functions, resonator implementations or coupling structures. This paper revisits some of the last advances in this area, including the modeling and full-wave simulation. Some recent designs using dual-mode cavities along with other novel implementations in ridge waveguide will be shown.

40 GHz Vertical Transition with a Dual-Mode Cavity for a Low-Temperature Co-fired Ceramic Transceiver Module

  • Byun, Woo-Jin;Kim, Bong-Su;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun;Kulke, Reinhard;Kersten, Olaf;Mollenbeck, Gregor;Rittweger, Matthias
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.195-203
    • /
    • 2010
  • A new vertical transition between a substrate integrated waveguide in a low-temperature co-fired ceramic substrate and an air-filled standard waveguide is proposed in this paper. A rectangular cavity resonator with closely spaced metallic vias is designed to connect the substrate integrated waveguide to the standard air-filled waveguide. Physical characteristics of an air-filled WR-22 to WR-22 transition are compared with those of the proposed transition. Simulation and experiment demonstrate that the proposed transition shows a -1.3 dB insertion loss and 6.2 GHz bandwidth with a 10 dB return loss for the back-to-back module. A 40 GHz low-temperature co-fired ceramic module with the proposed vertical transition is also implemented. The implemented module is very compact, measuring 57 mm ${\times}$ 28 mm ${\times}$ 3.3 mm.

A Study on High-Power Handling Capability of X-Band Circular Waveguide Cavity Filter (X-대역 원통형 도파관 캐비티 필터의 고전력 핸들링 능력 연구)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Pil-Yong;Jang, Jin-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • In this paper, we presented the result of the study on high-power handling capability of the X-band circular waveguide cavity filter configured at the output of high power amplifier(120 W) for geostationary satellites. The dual mode circular waveguide cavity filter with 6th order is selected and the physical model of the filter is designed after determination of the size of resonator from mode chart. Multipactor margin analysis is performed by the SEM method and the VMF method. The result shows that the VMF method predicts lower multipactor breakdown thresholds than the SEM method. Evaluating the multipactor margin obtained by the VMF method to ECSS criteria, we could decide to perform multipactor test. The multipactor test conducted in ESA facility shows that multipactor did not occur even until the RF power increased up to 540 W. In consequence, by both analysis and test, we could verify that the X-band circular waveguide cavity filter has the sufficient high-power handling capability to operate on orbit.