• Title/Summary/Keyword: dual filler system

Search Result 9, Processing Time 0.023 seconds

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Dispersibility, Electrical Property of Nano-Composite by Solution Mixing Method (용액혼합법에 따른 나노복합재료 분산성 및 전기적 특성)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.73-74
    • /
    • 2008
  • In this paper, we have investigated dispersibility, volume resistivity of nano-composite by solution mixing method. Dispersibility measured by FE-SEM(Field Emission Scanning Electron Microscope. And volume resistivity measured by ASTM D991. To expect interaction used dual filler system. But, dual filler system had influence on polymer complex. So, polymer chain mobility doesn't resist.

  • PDF

Mechanical, Thermal and Electrical Properties of Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes (다중벽 카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, Jeong-Ho;Huh, Mong-Young;Yang, Hoon;Shin, Dong-Hoon;Park, Dae-Hee;Nah, Chang-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.422-427
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. Commercial semiconducting layers ire composed of polymer composites reinforced with more than 30 wt% of carbon blacks. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing and precipitation with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With the decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

The Study of Measuring Method for Signal Processing Delay to Dual Mode Signal Transmission for Satellite DMB System (위성 DMB Dual Mode 신호전송에 따른 신호변환 Delay 측정 방법에 관한 연구)

  • Lee Young-Su;Choi Gyeong-Ho;Lee Byung-Suk;Cho Sung-Min;Ihm Tae-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.31-34
    • /
    • 2004
  • 본 논문에서는 현재 위성 DMB 국내 표준으로 채택되어 있는 System E 방식의 Dual Mode 신호 전송에 따른 신호변환시 Time Delay측정 방법에 대해서 제안을 하였다. 제안된 방식의 경우 아날로그 방식이 아닌 디지털 방식으로 정확한 Time Delay 측정이 가능하다. 그리고 위성 DMB Gap Filler System의 입 출력 단자를 통하여 측정이 가능함으로 측정값에 대한 신뢰성 확보가 가능하며 자동측정 방식임으로 측정시 발생될 수 있는 Human Error를 최소화 할 수 있다는 장점을 가지고 있다.

  • PDF

STUDIES OF DUAL COMPONENT AND MICROPARTICALE RETENTION SYSTEM IN PAPERMAKING ON DYNAMIC DRAINAGE CONDITION

  • Su, Xie-Lai;Yi, Wand-Hai;Shan, Chen-Fu;Quan, Long-Yan
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.125-129
    • /
    • 1999
  • This paper dealt with effect of dual component and micropartical retention system on papermaking. First-pass retention under dynamic drainage condition was studied in neutral and alkaline papermaking system. Cationic starches, amphoteric starches and amphoteric polyacrylamide were added prior to high shear force, then anionic. The system is found to be very useful to inprove filler retention. For mitigating unfavorable effect of interfering sub-stances, anionic trash catcher(ATC) such as p-DADMAC was tested in this study.

Properties of SBR Compound using Silica-graphite Dual Phase Filler (실리카-그라파이트 이원 충진제를 이용한 SBR 컴파운드의 성질)

  • Shin, Ji Hang;Shanmugharaj, A.M.;Lee, Pyoung Chan;Jeoung, Sun Kyung;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Carbon coating on silica particles is done by grafting expanded graphite on the silica aggregates. Successful coating of carbon is corroborated using FT-IR, TGA, XPS and TEM. Crystalline nature of coated graphite is corroborated using XRD. Influence of carbon coated silica particles on rheometric and mechanical properties of SBR composites are investigated. Carbon coated silica particles showed significant improvement in rheometric and mechanical properties, when compared to pristine silica filled system corroborating higher polymer-filler adhesion. This fact was further supported by bound rubber content and equilibrium swelling ratios of unvulcanized and vulcanized SBR composites.

A Study on the Mechanical Properties of Semiconductive Shield Materials to Contain CNT (CNT를 함유한 반도전 재료의 기계적 특성 연구)

  • Yang, Hoon;Yang, Jong-Seok;Kook, Jeong-Ho;Nah, Chang-Woon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1343-1344
    • /
    • 2007
  • In this paper, we investigated mechanical characteristics about thermal properties in semiconductor layer of power cables. Method of specimen making used solution mixing and Tensometer 2000 of Alpha used for measurement of stress and strain. Semiconductor layer made an experiment on separately environmental temperature$[25^{\circ}C]$ and high temperature$[90^{\circ}C]$ which running temperature$[90^{\circ}C]$ of cables exposed. As a result, specimen of applicable DFS(Dual Filler System) could know mechanical superiority that its structural characteristics reinforcement considered thermal characteristics.

  • PDF

Comparison of Retention of Calcium Carbonate and Mechanical and Optical Properties of Sheets in Various Retention System (여러 가지 보류시스템에서 탄산칼슘의 보류와 종이의 기계적·광학적 특성의 비교)

  • Paik, Ki-Hyon;Ahn, Byoung-Jun;Shon, Sang-Don
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.315-320
    • /
    • 1996
  • In this paper, we investigated the retention amounts(ash contents) according to the addition amounts of retention aid and calcium carbonate and compared the mechanical and optical properties of sheets under the same ash content. As the addition amounts of retention aid increase, the retention of calcium carbonate, that is, ash contents of sheets increase in all retention system. In this case, the sheets included ash content as already expected is produced by adjusting the addition amounts of retention aid and calcium carbonate. Tensile index, burst index, tear index, internal bonding strength of sheets straightly decrease as the ash content of sheets increases. Especially, in the same ash content, all sorts of strength are high in compozil system, low in dual polymer system. Opacity increases along with according to the increase of ash content, and is high in hydrocol system, the worst in dual polymer system. In equal opacity, the strength of paper decreases compozil, hydrocol, and dual polymer system in order. But to judge she superiority or inferiority of retention aids, it should consider the various factors such as the optimum production and process conditions besides the retention amounts of filler and the sheet strength.

  • PDF

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.