• Title/Summary/Keyword: dual blade wind turbine generator

Search Result 4, Processing Time 0.021 seconds

Great capacity Generator of Wind Turbine (대용량 출력 풍력발전기 설계)

  • Hur, Man-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.366-368
    • /
    • 2007
  • Mr. Hur has developed the 7500KW permanent magnet synchronous generator. The 7500KW generator has dual blade system with vertical axis type generation module. The 7500KW generator will generating that it is too expensive and construction payment. The advantages of dual blade system are cheap in generation with better efficiency, and safety compact structure. But also this system has the expensive slide ring for to distribute electrical power.

  • PDF

A Study on the Development of a 10KW Class Dual Rotor Counter-Rotating Wind Turbine Generator System with Low Wind Speed/High Efficiency and Its Field Test (저풍속/고효율 10KW급 상호역회전 풍력발전시스템 개발 및 실증실험에 관한 연구)

  • Heo, Hyun-Kang;Jange, Tae-Jong;Kim, Sang-Uk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.495-499
    • /
    • 2009
  • 본 논문에서는 상호역회전 풍력발전기와 New Yaw System 실증시험에 대하여 제시한다. 상호역회전 풍력발전기는 공기의 유동을 가진 운동에너지의 공기역학적(aerodynamic) 특성을 이용하여 동일한 바람방향에 대해 상호 반대방향으로 회전하는 Front Blade와 Rear Blade를, Generator의 Rotor와 Stator에 각각 결합 형성한 것으로, Generator와 Dual Blade의 회전력이 원심력이 아닌 구심력으로 변환되어 무게중심이 균형을 이루게 한다. 이렇게 변환된 구심력은 회전구동부분의 편마모 현상, 소음발생 현상 및 불균형 톨크 발생 현상 감소효과가 공히 구현되도록 하여 풍력발전기의 구조적 안정성 및 발전효율 증대효과를 얻을 수 있도록 한 기술이다.

  • PDF

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

Modeling and Analysis of Variable Wind Speed Turbine System Using Back to Back Converter (Back to bock 컨버터를 갖는 가변속 풍력터빈 시스템의 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Keong-Bo;Kim, Jae-Hong;Moon, Sang-Ho;Oh, Sung-Bo;Kim, Se-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.150-157
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using the doubly fed induction generator(DFIG) connected the back to back converter system in the rotor side. In the simulation, using the model system which has the 660[kW] rated power, blade control and the dual converter system are modeled for verifying the control characteristics. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed, and for the rated output power over the rated wind speed. And also power factor is controlled by the reactive power. To verify the effectiveness of the proposed method, simulation results are compared with the actual data from the V47 VWTS located in Hangwon wind farm in Jeju-Do. According to the comparison of these results, this method shows excellent performance.