• Title/Summary/Keyword: dual algebra

Search Result 53, Processing Time 0.024 seconds

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Ninahuanca, Jose Luis Hinostroza;Tormena Jr., Osmar;Meloni, Luis Geraldo Pedroso
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.978-990
    • /
    • 2021
  • This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

Q-MEASURES ON THE DUAL UNIT BALL OF A JB-TRIPLE

  • Edwards, C. Martin;Oliveira, Lina
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.197-224
    • /
    • 2019
  • Let A be a $JB^*$-triple with Banach dual space $A^*$ and bi-dual the $JBW^*$-triple $A^{**}$. Elements x of $A^*$ of norm one may be regarded as normalised 'Q-measures' defined on the complete ortho-lattice ${\tilde{\mathcal{U}}}(A^{**})$ of tripotents in $A^{**}$. A Q-measure x possesses a support e(x) in ${\tilde{\mathcal{U}}}(A^{**})$ and a compact support $e_c(x)$ in the complete atomic lattice ${\tilde{\mathcal{U}}}_c(A)$ of elements of ${\tilde{\mathcal{U}}}(A^{**})$ compact relative to A. Necessary and sufficient conditions for an element v of ${\tilde{\mathcal{U}}}_c(A)$ to be a compact support tripotent $e_c(x)$ are given, one of which is related to the Q-covering numbers of v by families of elements of ${\tilde{\mathcal{U}}}_c(A)$.

A NUMBER SYSTEM IN ℝn

  • Jeong, Eui-Chai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.945-955
    • /
    • 2004
  • In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.

Logic of Quantum Mechanics for Information Technology Field

  • Yon, Yong-Ho
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.56-63
    • /
    • 2011
  • Quantum mechanics is a branch of physics for a mathematical description of the particle wave, and it is applied to information technology such as quantum computer, quantum information, quantum network and quantum cryptography, etc. In 1936, Garrett Birkhoff and John von Neumann introduced the logic of quantum mechanics (quantum logic) in order to investigate projections on a Hilbert space. As another type of quantum logic, orthomodular implication algebra was introduced by Chajda et al. This algebra has the logical implication as a binary operation. In pure mathematics, there are many algebras such as Hilbert algebras, implicative models, implication algebras and dual BCK-algebras (DBCK-algebras), which have the logical implication as a binary operation. In this paper, we introduce the definitions and some properties of those algebras and clarify the relations between those algebras. Also, we define the implicative poset which is a generalization of orthomodular implication algebras and DBCK-algebras, and research properties of this algebraic structure.

ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

  • Mohammad, Ramezanpour
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.557-570
    • /
    • 2015
  • Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.

JOINT SPATIAL NUMERICAL RANGES OF OPERATORS ON BANACH SPACES

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • Throughout this paper, X will always denote a Banach space over the complex numbers C, and L(X) will denote the Banach algebra of all continuous linear operators on X. Operator will always mean continuous linear operator. An n-tuple of operators T$_{1}$,..,T$_{n}$ on X will be denoted by over ^ T=(T$_{1}$,..,T$_{n}$ ). Let L$^{n}$ (X) be the set of all n-tuples of operators on X. X' will denote the dual space of X, S(X) its unit sphere and .PI.(X) the subset of X*X' defined by .PI.(X)={(x,f).mem.X*X': ∥x∥=∥f∥=f(x)=1}.

  • PDF

LIE BIALGEBRAS ARISING FROM POISSON BIALGEBRAS

  • Oh, Sei-Qwon;Cho, Eun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.705-718
    • /
    • 2010
  • It gives a method to obtain a natural Lie bialgebra from a Poisson bialgebra by an algebraic point of view. Let g be a coboundary Lie bialgebra associated to a Poission Lie group G. As an application, we obtain a Lie bialgebra from a sub-Poisson bialgebra of the restricted dual of the universal enveloping algebra U(g).

INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS

  • Ishiguro, Kenshi
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.299-309
    • /
    • 2010
  • The Weyl group of a compact connected Lie group is a reflection group. If such Lie groups are locally isomorphic, the representations of the Weyl groups are rationally equivalent. They need not however be equivalent as integral representations. Turning to the invariant theory, the rational cohomology of a classifying space is a ring of invariants, which is a polynomial ring. In the modular case, we will ask if rings of invariants are polynomial algebras, and if each of them can be realized as the mod p cohomology of a space, particularly for dihedral groups.