• Title/Summary/Keyword: drying potential

Search Result 240, Processing Time 0.031 seconds

Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

  • Kim, Byeongsoo;Gil, Hyung Bae;Min, Sang-Gi;Lee, Si-Kyung;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from $-20^{\circ}C$ to $-50^{\circ}C$) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from $-0.2^{\circ}C$ (10% gelatin) to $-6.7^{\circ}C$ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above $-40^{\circ}C$. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature ($-50^{\circ}C$) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals.

Enhancement of Sludge Dewaterability using a Starfish and the Radiation Technology (전자선과 불가사리 분말을 이용한 하수슬러지 탈수능 향상)

  • Yu, Dae Hyeon;Lee, Jae Gwang;Lee, Myeon Ju
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.681-687
    • /
    • 2004
  • This study was focused on the manufacturing method of a dewatering aid, which would reduce the water content of the sludge cake by enhancing the dewaterability of sewage sludge. The pretreatment technology for sludge by using radiation and among diverse discarded resources were starfish selected as the material to manufacture the dewatering aid. Starfish went through the process of washing, drying, and pulverizing. The starfish powder made in this process was applied to the digested sludge generated at the sewage treatment plant of D City, and its effects were investigated. The starfish powder that was 300 ${\mu}m$ in particle size was added to the irradiated digested sludge. After the application of the condensation process, the sludge with the starfish powder added was dewatered using the belt press and centrifuge, which were the traditional pressure dewatering devices. As the result, it reduced the water content of the sludge 20% higher than the dewatered cake with no dewatering aid added and irradiation. When the powder was added, it contributed to less use of the coagulant added. The more irradiation dose, the lower water content did the dewatered cake have and the more coagulant was needed for condensation, which seems to be a disadvantage that can be compensated for by the starfish dewatering aid. A small-scaled treatment of the study to a radiation technology and dewatering aid using a discarded resource confirmed the potential of dewaterability. Based on the results saying that the dewatering aid and radiation technology can improve dewatering effects using the traditional dewatering devices, this pretreatment technology will be expected to be applied to sewage treatment plants.

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.

Development of New Powdered Additive and Its Application for Improving the Paperboard Bulk and Reducing Drying Energy (I) -Analysis of Chemical and Physical Properties of Brewers Grain - (산업용지의 벌크 향상 및 건조에너지 절감을 위한 분말상 첨가제 제조기술 개발 (I) - 신규 유기물질 맥주박의 화학적.물리적 특성 평가 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Choi, Jae-Sung;Kim, Byeong-Ho;Lim, Gi-Baek;Kim, Da-Mi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.58-66
    • /
    • 2012
  • Brewers grain is a byproduct of beer brewing and consists primarily of grain husks, pericarp, and fragments of endosperm. Although this material is consumed by animals and used as fertilizer, a large amount of brewers grain is simply discarded. Therefore, new methods for utilizing this fibrous resource should be pursued. In this study, we examined the potential utilization of brewers grain as an additive in the paperboard industry by determining the chemical composition of brewers grain and the physical properties of brewers grain powders after grinding with two types of grinders. We found that brewers grain had a lower holocellulose content and higher lignin content and intermediate ash content when compared to other biomass materials, and did not contain any contaminants that would interfere with the papermaking process. Particles had a higher fiber length, less fiber width, and narrower shape factor distribution when ground by a blender type grinder than by a pin crusher type grinder. The blender type grinder was concluded to make regular brewers grain particles appropriate for papermaking.

Comparative effect of silkworm powder from 3 Bombyx mori varieties on ethanol-induced gastric injury in rat model

  • Lee, Da-Young;Cho, Jae-Min;Yun, Sun-Mi;Hong, Kyung-Sook;Ji, Sang-Deok;Son, Jong-Gon;Kim, Eun-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • Gastric ulcer is a clinical symptom characterized by inflammation of the gastric mucosa. Stress and alcohol consumption have been identified as the major cause of gastric ulcer. However, the effects of silkworms on ethanol-induced gastric ulcer have not been studied yet. The mature silkworms that are difficult to eat have become easier to ingest due to recent technological development to make steaming and freeze-drying mature silkworm larval powder (SMSP). In this study, we investigated whether three silkworm varieties, Baekokjam, Golden-silk and Yeonnokjam could alleviate ethanol-induced gastric mucosal damage in vivo. Sprague-Dawley rats pretreated with 3 SMSPs (0.1 or 1 g/kg BW) or normal diet (AIN-76A) were exposed to absolute ethanol (3 g/kg BW, 3 h) by oral gavage. Morphological examination included ulcer index as a measurement of hemorrhages and hematoxylin and eosin staining was performed to analyze the severity of gastric ulcer. Results of macroscopic examination suggested that all 3 SMSPs pretreatment significantly protected gastric mucosa against ethanol-induced damage. Microscopic observations demonstrated significant mucosal erosion and inflammation in ethanol-treated rats, which was abrogated in rats pretreated with 3 SMSPs. In addition, pretreatment with all 3 SMSPs showed significant decreases the expression of pro-inflammatory mediators, IL-6 and cyclooxygenase-2. Among SMSP from 3 varieties of silkworm, preadministration of 1 g/kg Baekokjam SMSP showed the most effective protective effect against ethanol-induced gastric ulcer. These results suggest that Baekokjam SMSP can be a potential gastroprotective agent against ethanol-induced gastric ulcer.

Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

  • Chun, Ji-Yeon;Kim, Byeongsoo;Lee, Jung Gyu;Cho, Hyung-Yong;Min, Sang-Gi;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.552-557
    • /
    • 2014
  • This study investigated the effects of ${\gamma}$-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration.

Antioxidative Activity of Browning Products Fractionated from Fermented Soybean Sauce (양조간장에서 분리한 갈색물질의 항산화성)

  • 최홍식;이정수;문갑순;박건영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.565-569
    • /
    • 1993
  • Antioxidative activity of browning product(BP) fractionated from fermented soybean sauce(SS) was studied during the oxidation process of linoleic acid mixture system. SSBP was a powder type product prepared from fermented soybean sauce by the fractionation through the Sephadex G-10 column and freeze drying of collected fraction. The aqueous model systems were used for the evaluation of antioxidative activity of SSBP during the oxidative reaction at $50^{\circ}C$ by the determination of peroxider and conjugated dienoic acid compounds. The linoleic acid mixture for the aqueous model systems was consisted of linoleic acid(64.6%), oleic acid(27.4%), and other acids in ethanolic phosphate buffer solution(pH 7.0). SSBP had a considerable antioxidative activity with the inhibition of formation of peroxides and conjugated dienoic acids during the autoxidation of linoleic acid mixtures in aqueous model systems. Antioxidative activity of SSBP was relatively higher than SS, however, lower than ${\alpha}-tocopherol$ and butylated hydroxyanisol. The antioxidative effect of SSBP was increased by the its concentrations from 0.05% to 0.5% in the oxidation reactions of aqueous model systems. Therefore, SSBP was considered as one of the potential natural antioxidants for the use of food products.

  • PDF

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Development of Hijiki-based Edible Films Using High-pressure Homogenization (고압 균질기를 이용한 가식성 톳 필름 개발)

  • Lee, Han-Na;Min, Sea-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Edible biopolymer films were developed from hijiki ($Hizikia$ $fusiforme$), using a high-pressure homogenization (HPH). Effects of pressure and pass number of HPH on color, tensile, moisture barrier properties, flavor profiles, and microstructure of hijiki films were investigated. A hydrocolloid of hijiki was processed by HPH at 69, 103, or 152 MPa with 1, 2, or 3 passes. A hijiki-base film was formed by drying a film-forming solution which was prepared by mixing of the HPH-processed suspension with glycerol and Polysorbate 20. Tensile strength and elastic modulus increased with increasing HPH pressure. Uniformity of the films increased as the pressure of HPH with 1 pass increased and the number of pass increased at 152 MPa. Water vapor permeability ($2.1-3.3g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$) and water solubility (0.4-1.0%), which are relatively low compared to those of many other edible films, show the potential that hijiki-base films are applied to the range of low to intermediate moisture food as wrapping or coating.

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • Seok, Hyeon-Gwang;Kim, Yu-Chan;Yang, Gui Fu;Cha, Pil-Ryeong;Jo, Seong-Yun;Yang, Seok-Jo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF