• 제목/요약/키워드: drying potential

검색결과 235건 처리시간 0.026초

Effects of Drying Methods Based on Exhaust Cycle and Time on the Quality and Drying of Red Peppers

  • Nam, Sang Heon;Ha, Yu Shin;Kim, Tae Wook
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.101-110
    • /
    • 2014
  • Purpose: The purpose of this study is to develop a system to optimize drying potential energy of the exhausted hot air by changing relative humidity of the air. This study modified the conventional drying method into a drying method changing exhaust cycle and time in order to control the relative humidity of the exhausted hot air during drying process. Method: A valve on the vent was controlled according to a preset time to change the exhaust cycle and time. This study analyzed the influence of the two different types of drying method on the drying characteristics, required energy, and quality of the dried peppers: conventional drying method exhausting hot air continuously and new drying method controlling exhaust cycle and time. Results: Drying characteristics based on exhaust time showed that drying time increased with exhaust time, and specific energy consumption was reduced by 28% from 18.39 MJ/kg (conventional method) to 13.24 MJ/kg when exhaust time was set to one minute. Drying characteristics based on heating time showed that drying time increased with heating time and specific energy consumption was reduced by 30% from 18.39 MJ/kg (conventional method) to 12.87 MJ/kg when exhaust time was set to 22 minutes. Drying characteristics based on exhaust cycle showed that drying time increased with exhaust cycle, and specific energy consumption was reduced by 31% from 18.39 MJ/kg (conventional method) to 12.69 MJ/kg when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. The quality of the dried red peppers showed that capsaicin, color, and sugar content were high as 34.87 mg/100g, 66.33, and 11.87%, respectively, when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. Conclusions: In order to utilize the drying potential energy of the exhausted air during drying process, the conventional drying method was modified into the drying method controlling exhaust cycle and time. The results showed that drying with exhaust cycle of one minute was more efficient in terms of drying time, required energy, and quality of the dried peppers than the one with exhaust cycle of 20~40 minutes.

Monitoring the Wood Drying Process with an Image Processing System (I) : Drying Characteristics of Tree Disk of Black Locust

  • Lee, Hyoung-Woo;Kim, Byung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.21-26
    • /
    • 2001
  • Acquisition of precise information on drying characteristics of wood is indispensable for the improvement of drying schedules and wood quality. Recognition of the exact moisture content at which drying defects such as checks occur during drying with given drying conditions may be essential to reduce drying losses. In this study an image-processing system was combined with a laboratory-scale wood dry kiln for experiments and the surface of tree disk of black locust (Robinia pseudoacacia L.) was monitored to investigate the behavior of check formation over all the drying process. This system showed good potential for improving drying schedules and wood product quality.

  • PDF

Comparative Water Relations of Two Vitis vinifera Cultivars, Riesling and Chardonnay

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • 제24권4호
    • /
    • pp.223-226
    • /
    • 2001
  • The leaf water relations and photosynthetic rate during acute soil drying were compared in potgrown grapevine cultivars, Vitis vinifera cv. Chardonnay and V. vinifera cv. Riesling. Leaf water potential in Riesling decreased significantly from day 2 after water had been withheld, while in Chardonnay leaf water potential for the water-stressed plants was almost identical with that in well watered plants during the first 4 days. Higher stomatal conductance and photosynthetic rate in Chardonnay than Riesling were observed until day 3 after withholding water. Photosynthetic rate in water-stressed Chardonnay was not different from that in control plants until day 3 after withholding water, while that in water-stressed Riesling was reduced markedly from day 2. In Riesling, osmotic potential at turgor loss point was not changed irrespective of watering conditions. However, in Chardonnay osmotic potential at turgor loss point decreased more in the water stressed conditions than in well watered conditions. The osmotic adjustment in Chardonnay under water stress conditions must contribute to the maintenance of higher stomatal conductance and photosynthetic rate than those in Riesling for a significant period of the drying process. Though difference in stomatal conductance between the two cultivars was shown in the process of soil drying, stomatal conductance of both cultivars responded to vapor pressure difference between leaf and ambient air, rather than soil water status and leaf water potential.

  • PDF

잠재적 효소식품 원료로서 발아현미의 마이크로파 진공건조 (Microwave Vacuum Drying of Germinated Brown Rice as a Potential Raw Material for Enzyme Food)

  • 김석신;김상용;이원종
    • 한국식품과학회지
    • /
    • 제30권5호
    • /
    • pp.1107-1113
    • /
    • 1998
  • 품질이 우수한 효소식품으로의 활용가능성 검토를 위해 현미를 발아시킨 후 마이크로파 진공건조로 건조하고 그 건조특성과 품질특성을 열풍건조, 진공건조, 그리고 동결건조의 경우와 비교해 보았다. 마이크로파 진공건조 1 및 2의 경우 열전달속도가 빨라 건조 개시후 5분 경과후 $60^{\circ}C$에 도달하였고 건조시간 내내 $60{\pm}2^{\circ}C$를 유지하였으나 열풍건조의 경우는 건조개시 60분 경과 후, 진공건조의 경우는 2시간 경과 후에야 $60^{\circ}C$에 도달하였다. 마이크로파 진공건조 1의 경우 건조 3시간 후 수분함량 0.08 kg water/kg solid까지 감소하였으나, 마이크로파 진공건조 2의 경우 총건조시간 2시간만에 수분함량 0.O6 kg water/kg solid까지 감소하였다. 열풍건조의 경우 건조시간 4시간만에 수분함량 0.14 kg water/kg solid까지 감소하였으나 최소한 2시간은 더 건조시켜야 할 것으로 예상되었다. 마이크로파 진공건조 1 및 2의 초기 건조속도는 0.05 kg water/kg solid/min이었으며 처음부터 건조속도가 계속 감소하는 감률건조를 보였다. 열풍건조의 경우는 초기 건조속도가 0.0057 kg water/kg solid/min으로서 마이크로파 진공건조 1 및 2의 1/10 수준이었으며 건조개시 30분까지 항률건조를 보이다가 임계수분함량 0.81 kg water/kg solid 부근부터 감률건조가 시작되었다. 건조시료의 ${\alpha}-amylase$ 활성 및 protease 활성은 마이크로파 진공건조, 동결건조, 진공건조 및 열풍건조의 순서를 보였고, diastatic activity의 경우 동결건조와 마이크로파 진공전조가 거의 대등한 품질보존효과를 보여 주었다. 이로부터 마이크로파 진공건조를 이용하여 건조할 경우 최소한 동결건조와 대등한 품질의 건조제품을 제조할 수 있으리라 예상되었다.

  • PDF

열펌프 건조기의 기본 설계를 위한 건조 성능 해석 (Drying Performance Simulation for the Basic Design of a Heat Pump Dryer)

  • 이공훈;김욱중
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.

온실을 이용한 홍고추의 건조 (Red Pepper Drying with Solar Energy in Greenhouse)

  • 윤용철;서원명;강종국;조화태
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.256-260
    • /
    • 2001
  • This study was initially performed to investigate current red-pepper drying methods commonly being adopted on red-pepper cultivation farm area. Based on the informations obtained from the field survey, an experiment of red-pepper drying was carried out to verify the actual drying potential of plastic covered solar house similar to the conventional pipe frame greenhouses covered with one or two layer of plastic film. Some results obtained from field survey and drying experiment for red-pepper are summarized as follows; 1. Various patterns of red-pepper drying process were found; 1) complete natural drying with red-pepper exposed in outdoor air, 2) hot air drying by dry chamber only, 3) combination drying by hot air dryer together with plastic covered passive solar house, 4) drying with plastic covered solar house unit. 2. The average air temperatures of outdoor and solar house during drying experiment period were $26.9-30.8\;and\;28.6-33.8^{\circ}C$, respectively, and the maximum air temperatures of those two were $34.2-36.4\;and\;39.8\;-52.3^{\circ}C$, respectively. Horizontal solar intensity during experiment period was $18.49-23.96\;MJ/m^{2}$, and relative humidity of outdoor and experimental solar house were 56 - 66% and 64 - 70%, respectively. 3. The weight of red-pepper during drying experiment period was decreased almost linearly from initial moisture content of 85% to final moisture content of 14%.

  • PDF

2-사이클 열펌프 건조기에서 건조과정에 대한 실험적 연구 (Experimental Study on the Drying Process in the Two-Cycle Heat Pump Dryer)

  • 이공훈;김욱중;김종률;이상열
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.636-641
    • /
    • 2008
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison to conventional air drying. The heat pump dryer is usually operated at the temperature less than $50^{\circ}C$ and the drying temperature is limited to the operating temperature of the heat pump system. In order to increase the drying temperature, the special box-type heat pump dryer has been developed. The dryer uses the two-cycle heat pump system which has the two heat pump cycles for high and low temperature heating. The high temperature cycle uses the refrigerant 124 to get the temperature greater than $80^{\circ}C$ and the low temperature cycle uses the refrigerant 134a. The drying experiment has been carried out to figure out the performance of the dryer with the selected drying material.

  • PDF

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

The role of polymers in dispersion stability and film formation of silica/PVA suspension

  • 김선형;성준희;안경현;이승종
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.23.2-23.2
    • /
    • 2010
  • Researches on the drying of particle/polymer suspensions receive attentions in technical applications such as manufacturing display and batteries. In this study, the effect of polymers on drying behavior of silica/poly(vinyl alcohol) suspension was investigated in terms of suspension stability and stress development during drying. The effect of polymer adsorption was studied by changing pH. More strongly flocculated suspension with lower pH became more dispersed and close-packed film after drying. Evaluation of potential energy allows us to suggest that the adsorbed polymers which bridge the particles introduce steric repulsion and lead flocculated suspension to dispersed film. When the effect of adsorption kinetics was studied by changing the mixing time, the adsorption amount, characteristic stress and dried film density showed a similar behavior in the form of with a single characteristic time. It implies that the drying process can be determined by simple characteristic equation with a single time constant.

  • PDF

Enhancing the Thermotolerance of Entomopathogenic Isaria fumosorosea SFP-198 Conidial Powder by Controlling the Moisture Content Using Drying and Adjuvants

  • Kim, Jae Su;Lee, Se Jin;Lee, Hyang Burm
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.59-65
    • /
    • 2014
  • Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at $10^{\circ}C$ and $20^{\circ}C$ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at $30^{\circ}C$ and $40^{\circ}C$ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to $50^{\circ}C$ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% $H_2O$) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon.