• Title/Summary/Keyword: dry-wet spinning

Search Result 28, Processing Time 0.023 seconds

Preparation and physical properties of biodegradable polybutylene succinate/polybutylene adipate-co-terephthalate blend monofilament by melt spinning (용융방사에 의한 생분해성 PBS/PBAT 블랜드 모노 필라멘트 제조 및 물리적 특성)

  • Park, Seong-Wook;Kim, Seong-Hun;Choi, Hea-Sun;Cho, Hyun-Hok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • In order to improve the breaking strength and elongation of Polybutylene succinate (PBS) monofilament, the monofilament was produced by blending PBS and Polybutlyne adipate-co-terephthalate (PBAT). The PBS/PBAT blend monofilament was prepared by the melt spinning system, and the weight ratios of the compositions of PBS/PBAT was 100/0, 95/5, 90/10 and 85/15, respectively. The breaking strength, elongation, softness and crystallization of PBS/PBAT blend monofilament were analyzed by using a tensionmeter, softness measurement, X-ray diffractometer in the both dry and wet conditions. The PBS/PBAT blend monofilaments were spun in the take-up velocity of 1.19m/sec under the drawing ratio of 6.8:1 condition. The production volumes of PBS/PBAT blend monofilaments showed 20% less than that of Nylon. The breaking strength of PBS/PBAT blend monofilaments were decreased as PBAT contents increased, while elongation and softness were increased. In case of PBAT content were over 5%, the breaking strength, elongation and softness of PBS/PBAT blend monofilaments were not shown to increase in spite of increasing in PBAT contents. Based on these results, it was possible to make the monofilaments with the maximized physical properties when the PBAT contents at 5%.

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Effect of propyl gallate on the properties of regenerated cellulose fiber spun from NMMO dope system (Propyl gallate가 NMMO계에서 제조된 셀룰로오스 섬유의 물성에 미치는 영향)

  • Lee, Soo;Lee, Sang-Won;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • Regenerated cellulose fibers were prepared from three pulps containing different degree of polymerization(DP) and $\alpha$-cellulose contents by dry-jet wet spinning technique with cellulose dope in N-methylmorpholin N-oxide (NMMO). The effect of antioxidant, n-propyl gallate (PG) on the properties of different regenerated celluloses was studied using X-ray diffraction, copper number calculation, and viscometry. The degradaqtion of regenerated cellulose from pulp containing higher DP and lower $\alpha$-cellulose content was occurred more seriously. The tensile strength and initial modulus of regenerated cellulose fiber obtained from NMMO dope with PG were higher than those of fiber obtained from NMMO dope without PG. All fibers showed the round shape cross section and typical cellulose II crystalline structure.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

Physical Property of Hemp/Tencel Eco-Friendly Blend Spun Yarns (Hemp/Tencel 혼합 친환경 방적사의 물성)

  • Kim, Seung-Jin;Woo, Ji-Yun;Jang, Hong-Won;Kang, Ji-Man;Jang, Jae-Sik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.62-62
    • /
    • 2012
  • 지구온난화 및 환경오염의 영향으로 선진국을 중심으로한 환경규제가 심해지면서, 홈 텍스타일 분야에서는 세계 패션 트렌드 및 소비자 선호에 부응한 친환경 섬유소재 개발, 웰빙 시대에 적합한 기능성 및 고감성 제품개발을 통한 차별화가 요구되고 있다. 최근의 섬유산업의 동향도 인체에 무해한 천연적인 섬유소재에 많은 관심이 증대됨에 따라 개인의 건강 뿐만 아니라 환경을 생각하는 생활패턴인 친환경섬유의 개발이 새로운 트렌드로 떠오르고 있는 실정이다. 헴프는 일년생 식물로서 학명은 Cannabis sativa L.이다. 헴프섬유의 장점으로 내구성 및 내수성, 항균성 등이 우수한 것으로 보고되고 있으나 양질의 원료 확보, 세섬도 추출 기술 및 combing 기술 등의 부족으로 100% 헴프 세 번수 방적사의 제조가 어려워 주로 면섬유와의 혼합소재로 제조되어 왔다. 최근 들어, 친환경 소재로서 박테리아 성장 억제 기능을 가진 재생섬유인 Tencel 소재를 이용하여 stiff한 Hemp의 성질에 유연성을 추가하여 촉감을 개선함과 동시에, Tencel과 Hemp를 혼용함으로써 soft touch부터 harsh touch까지 혼용율에 의한 다양한 감성을 느끼게 함으로써 용도의 다양화 추구가 시도되어 왔다. Hemp의 거친 느낌을 완화시키고 Tencel의 박테리아 억제 기능과 Hemp의 항균기능, 방충, 탈취기능이 상호 보완되어 친환경적이고 위생적인 다용도 홈 인테리어 및 가구용 직물 등의 제품으로 Hemp/Tencel 복합사가 많이 사용되고 있다. 본 연구는 Hemp와 Tencel의 혼용율의 변화에 따른 복합사의 물리적 특성을 확인하기 위하여 천연복합 태번수 방적사 최적 사설계 이론을 적용하여 Hemp 섬유 혼용율에 따른 사의 물성분석을 함으로써 Hemp/Tencel 방적사 최적 공정 조건을 결정하기 위한 사설계 이론 결과와 실험결과를 비교 분석하고자 한다. 최적 천연 Hemp복합방적사 사설계의 이론화 및 사 물성 DB화 그리고 태번수 Hemp사의 물성분석 및 이들을 DB화 함으로써 가구용 직물로 많이 사용되는 친환경 Hemp 소재사의 방적성 향상을 꾀하고자 한다. 이를 위해서 제조한 방적사의 Dry heat shrinkage와 Wet heat shrinkage를 측정하여 확인하였고 인장시험기를 이용하여 Tenacity, Initial Modulus, breaking strain을 측정 분석하였다. 방적사의 표면 특성은 영상 현미경 시스템을 사용하여 ${\times}40$ 배율로 측정하여 확인하였다.

  • PDF

Far-Infrared Emission Characteristics of Germanium Included Fabrics for Emotional Garment (게르마늄 함유 감성의류용 직물의 원적외선 방출 특성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.13 no.4
    • /
    • pp.687-692
    • /
    • 2010
  • This paper surveys emission characteristics of Far-infrared of the fabrics fabricated with germanium imbedded sheath-core conjugate composite filaments. For this purpose, master batch chip was prepared with PET semi-dull chip and nano sized germanium particles and sheath-core type conjugate composite filament was spun using this master batch chip and polyester semi dull. The emission power and emissivity of the germanium imbedded fabrics were measured and investigated using FT-IR spectrophotometer by KICM- FIR 1005 measurement method. In addition, the fabric mechanical properties were measured and discussed with the effects of the optimum texturing process conditions and fabric structural design conditions. The sheath/core type PET composite germanium imbedded filaments were manufactured by the optimum spinning condition, its tenacity and breaking strain showed the same level as the regular PET filament. The tenacity and breaking strain of the DTY showed good physical properties and no problem in the weaving process. Then, wet and dry shrinkages showed higher values than those of regular PET filament. The emission power of the germanium imbedded fabric was $3.53{\times}10^2W/m^2$ at the $5-20{\mu}m$ wave length range, and emissivity was 0.874. The fabric hand of germanium imbedded fabrics was inhanced by the optimum texturing process and fabric structural design with improved mechanical properties such as fabric bending and compressional properties.

  • PDF

Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane (비이온계 첨가제에 의한 폴리술폰계 중공사 막의 모폴로지 조절과 기체투과 특성)

  • Lee, Hye Jin;Koh, Mi Jin;Kim, Duek Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.224-233
    • /
    • 2012
  • To improve permeation performance of gas separation membrane, polysulfone hollow fiber membrane was prepared by wet-dry phase inversion method using Triton X-100 as non-ionic additive. And variation of gas permeation behavior by additive was investigated. Various spinning conditions such as air gap, concentration of polymer, dope tank temperature were controlled and these effects were studied. The morphology and gas permeation property of hollow fiber membranes were investigated using scanning electron microscope (SEM) and bubble flow meter respectively. We confirmed that the membranes added with Triton X-100 had a smooth external skin at various air gap length conditions. The macrovoids of these hollow fiber membranes were more developed with increase of air-gap from 4 to 90 cm and that induced higher permeance. The permeance of polysulfone membranes has the higher value at comparatively lower concentration polymer (30 wt% polysulfone) and lower concentration of additive (15 wt% Triton X-100). When temperature in dope tank was controlled, the membranes prepared at $100^{\circ}C$ showed low permeance because of volatilization of additive and solvent.