• Title/Summary/Keyword: dry strength agent

Search Result 76, Processing Time 0.022 seconds

Opportunities of Reducing Refining Energy Using Enzyme and Dry Strength Agent (효소처리와 지력증강제 활용을 통한 고해동력 절감)

  • 이학래;서만석;허용대;강태영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • Reducing the energy consumption while maintaining pulp quality is an important objective of today's paper industry. Enzymatic treatment of fibers and the application of dry strength agent were investigated as methods to reduce energy consumption during refining and to upgrade fiber characteristics. Modification of recycled fibers with an enzyme was effective in improving relining efficiency and reducing refining energy. Optimization of dry strength agent application conditions including stock pH, cationic demand, zeta potential, etc. were found to be very important for improving its effectiveness.

Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards- (고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

A Study on the Shrinkage Reducing Properties of Steel Fiber Reinforced Ultra High Strength Cement Mortar (강섬유보강 초고강도 시멘트 모르터의 수축저감에 관한 연구)

  • Han Dong-Yeop;Heo Young-Sun;Pei Chang-Chun;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.67-70
    • /
    • 2005
  • Ultra high strength concrete, nowadays, has been widely applied to construction of high-rise building. To improve ductility and mechanical properties, steel fiber is employed in UHSC. This study investigates practical application of expansive additives(EA) and shrinkage reducing agent(SRA), in order to secure volumetric stability and improved mechanical properties, such as autogenous shrinkage and dry shrinkage of steel-fiber-reinforced-ultra-high-strength-comet-mortar(FHSM). According to the test, individual addition of steel fiber does not affect shrinkage reduction, as expected. However FHSM, with combined addition of 5$\%$ of EA and 1$\%$ of SRA decreased 60$\%$ of autogenous shrinkage. It is considered that Proper combination of EA and SRA can secure the shrinkage resistance of FHSM.

  • PDF

A Fundamental Study on Physical Properties of Ultra High-Strength Concrete using Expansion Agent (팽창제를 사용한 초고강도 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Han, Da-hee;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.85-88
    • /
    • 2008
  • As super-high-strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super-high-strength concrete. Accordingly, the present study prepared super-high-strength concrete with design strength of over 100MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super-high-strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super-high-strength concrete.

  • PDF

A Study of the appraisal for adhesive stability classified by tile bond agent on the dry wall surface (건식벽체에서 접착제 종류에 따른 타일부착 안전성 평가에 관한 연구)

  • Um Chan-Young;Sun Yoon-Suk;Kwon Shi-Won;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.173-178
    • /
    • 2005
  • The tile construction methods for existing have been used materials within limit which adhesion by wet method in masonry wall and concrete structure. These existing adhesive tech can caused many problems in construction of large and reform tile, after that it can be happened loose scale, peel off, falling off tile by heat and vibration or impact. In according to, this study is to test tile for bond stability, adhesive property by impact, vibration. low property by heat and then, we have the results as below; (1) The tile adhesive stability can be effected as adhesive area between bond agent and tile, adhesive area can more wide and press enough to ensure property. (2) Existing adhesive strength and standard relative tile construction is limited to adjust performance tile on the concrete and masonry wall. In summary, It is necessary to establish standard of performance and test method to ensure tile adhesive salability in dry wall.

  • PDF

Solidification/Stabilization of Dyeing Sludge Treated by Fenton Reagent Using Blast Furnace Slag and Fly Ash

  • Lee, Sookoo;Kim, Sebum
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.453-458
    • /
    • 2001
  • This study was performed to reuse the dyeing wastewater sludge treated by Fenton process through the solidification/stabilization technique. To solidify the dyeing sludge the industrial by-products such as blast furnace slag, fly ash and waste sand with cement were used. The laboratory scale and pilot scale test were conducted at room temperature to make construction brick which has high compressive strength and low leaching of heavy metals. The experimental results showed that blast furnace slag and fly ash could be used instead of cement and the products satisfied the regulation of Korean Standards. The blast furnace slag increased the compressive strength and the optimum ratio of slag/dyeing sludge on dry basis was found 0.4. The solidifying agent of SB series could increase rapidly the compressive strength and the optimum ratio of solidifying agent/sludge on dry basis was 0.26 at which the strength was two times compared with non-added condition. The portion of waste and industrial by-products in matrix was over 80%. From the pilot test the optimum pressure in molding was 100kg/$\textrm{cm}^2$ at which the compressive strength was over 100kg/$\textrm{cm}^2$. And the strength increased continuously to 160kg/$\textrm{cm}^2$ until 120 days curing time due to pozzolanic reaction. When SB-20 as a solidifying agent was used, the unconfined compressive strength of dyeing sludge could be obtained 110kg/$\textrm{cm}^2$ which satisfied the regulation of cement brick in Korea Standard(KS).

  • PDF

Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

  • Lee, Yoon;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.155-159
    • /
    • 2012
  • Objectives: To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods: Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil $S^3$ Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results: All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil $S^3$ Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions: Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

EFFECT OF REWETTING AGENT ON DENTINAL MICROTENSILE BOND STRENGTH (상아질에 적용된 재 습윤제가 미세인장 결합강도에 미치는 영향)

  • Kang, Hee-Young;Cho, Young-Gon;Kim, Jong-Uk;Park, Byung-Cheul;Yoo, Sang-Hoon;Jin, Cheul-Hee;Choi, Hee-Young;Ki, Young-Jae
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2004
  • This study investigated that the effect of rewetting agent on dentinal microtensile bond strength(${\mu}TBS$). Human molars were sectioned to expose the superficial dentin surfaces. Samples were divided into two groups according to type of adhesives-Single Bond (S) and One-Step (0)], and again subdivided into five groups by different dentin surface treatment-dry for 15s (D), blot dry (BD) or dry for 15s, and rewet with different rewetting agents [distilled water (DW), Gluma Desensitizer (GD) and Aqua-Prep (AP)] for 30s. After application of adhesive, composite resin was built up on the bonding surface. Each tooth was sectioned to obtain stick with $1\textrm{mm}^2$ cross sectional area and the ${\mu}TBS$ was determined by EZ test. In the S group, the mean ${\mu}TBS$ of GD, AP, and BD group was significantly higher than that of DW and D group (p < 0.05), In the O group, the mean, ${\mu}TBS$ of AP, GD, BD and DW group was significantly higher than that of D group (p < 0.05). The data suggested that Gluma Desensitizer and Aqua-Prep could be successfully used as rewetting agents, and Distilled water could be acceptable in aceton based adhesive system only.

Effect of rewetting agent on dentinal microtensile bond strength

  • Kang, Hee-Young;Cho, Young-Gon
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.568-568
    • /
    • 2003
  • I. Objectives This study investigated the effect of rewetting agent on dentinal microtensile bond strengths(${\mu}TBS$), using one bottle adhesives. II. Materials and Methods Non caries human molars were sectioned to exposed the superficial dentin surfaces, etched 15 seconds using 32% phosphoric acid and 10 seconds rinsed. Samples were randomly divided into two groups according to adhesives (Single Bond, One-Step) used. Each group were subdivided into five groups by different dentin surface treatment:15 second dry(D), blot dry(BD) or 15 second dry and rewetted with distrilled water(DW), Gluma Desensitizer(GD) and Aqua-Prep(AP) during 30 second, respectively.(omitted)

  • PDF

The Study of Water Stability of MDF Cement Composite by Addition of Silane Coupling Agent (Silane Coupling Agent 첨가에 의한 MDF Cement Composite의 수분안정성 연구)

  • 노준석;김진태;박춘근;오복진;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 1998
  • The effect of silane coupling agents on the water stability of HAC/PVA based MDF cement composites which were modified with urethane and epoxy resin were studied as a function of the functional groups and addition amount of silane coupling agent. According to the composition of polymer matrix the silanes with different functional groups showed the different effectiveness. In case of the only PVA matrix the silane with vinyl functional group was more effective than other silanes. When the epoxy resin was added the silane of epoxy-methodxy group enhanced the flexural strength of dry and wet state more than other. In case of urethane-added MDF cement the silane of diamine group was effective and enhanced the water sta-bility fo MDF cement composite more and more as the addition amount of silane increased, Especially in case of warm-presed composite the effect of silane was enhanced By addition of 2wt% of silane with 야-amine group the flexural strength of urethane-added composites were enhanced by 20% more in dry state 40-70% in wet state in accord with the porosity analysis. The flexural strength of the poxy resin-added MDF cement composite was increased by addition of 1wt% and 2wt% silane of epoxy-methoxy group However the addition of 4wt% of silane decreased the flexural strength of dry and wet state by formation of closed pore in the polymer matrix.

  • PDF