• Title/Summary/Keyword: dry spell

Search Result 12, Processing Time 0.022 seconds

A Study on Variability of Consecutive Dry Days by Riverbasin in South Korea (한국의 유역별 연속건조일의 변화에 관한 연구)

  • Lee, Seung-Ho;Kim, Eun-Kyung;Heo, In-Hye
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.6
    • /
    • pp.666-678
    • /
    • 2011
  • This study is aimed to examine the variability of consecutive dry days in South Korea. The country is divided into six basins including Han river, Nakdong river, Geum river. Seomjin Yeongsan river, Eastern Coast area and Island area, and three extreme precipitation indices-related to dry days are analyzed at sixty weather stations. Trends of max number of consecutive dry days were unstable during 1973~2010. Variability range of max number of consecutive dry days trends in Nakdong and Seomjin Yeongsan river was larger than that in Han and Geum river. Recently, the range in Nakdong and Seomjin Yeongsan river was bigger and bigger. Maximum dry spell was observed in autumn and winter in most of riverbasins. Especially, Maximum dry spell in winter was more frequent than in other seasons in Nakdong river. Variability range of persistence dry spells was smaller than that of max number of consecutive dry days. However, the increasing trends of the Geum river and the Seomjin Yeongsan river are statistically significant in recent. In Nakdong river, difference between persistence dry spell average and persistence dry spell median was larger than any other riverbasin. It means that there is strong possibility of occurrence of long term consecutive dry days in Nakdong river.

  • PDF

A Study on the Alternative to Estimate the Design Low-Flow based on the Runoff Hydrology and the Dry Spell Stochastics (수문-추계 결합법에 의한 설계갈수량 추정법 연구)

  • Lee, Jae-Hyoung;Yoon, Jae-Min
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.375-384
    • /
    • 2002
  • This study is to suggest a method to estimate the design low-flow based on the runoff hydrology. The recession time model to transform a return period into the recession time is derived under the similarity between dry spell and low-flow runoffs event. The proposed recession model can be applied to the gaging station and the ungaged outlet. This recession time model contains the parameters: for climate conditions, watershed characteristics, and runoff characteristics etc. And the recession model is composed of the parameters which are initial discharge and recession constant. This model is applied to the Yongdam gaging station and the other temporary gaging station. Consequently, it is proved that this model can be used for an alternative practice to estimate the design low-flow at the gaging station with short-term runoff data or the ungaged outlet.

The Correlation between Groundwater Level and the Moving Average of Precipitation considering Snowmelt Effect and Critical Infiltration in Han River Watershed (융설효과와 한계침투량을 고려한 한강유역의 지하수위와 강우이동평균간의 상관관계)

  • Yang, Jeong-Seok;Kim, Nam-Ki
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2009
  • The relationship between precipitation and groundwater level and the correlation between the moving average of precipitation and goundwater level were analyzed for the Han river watershed in Korean peninsular. Fourteen regions in the watershed were selected and there were somewhat different patterns of seasonal fluctuation of groundwater level data. The groundwater level data tends to decrease in dry spell and increase in wet spell however the range between maximum and minimum values is quite different for each gauging point. We could have stronger correlation between groundwater level for fractured rock aquifer and the moving average of precipitation than the groundwater level for alluvial aquifer. The critical infiltration, which is the maximum daily infiltration averaged throughout watershed, value is turned out to have the range of 10 to 90 mm. We could have stronger correlation when we consider critical infiltration and modify the original precipitation data than we use original precipitation data. We also could have higher correlation coefficient when we consider snowmelt effect for the watershed that has considerable snow event.

The Correlation between the Moving Average of Precipitation and Groundwater Level in Southern Regions of Korea (한국 남부지방의 강수량 이동평균과 지하수위의 상관관계)

  • Yang, Jeong-Seok;Ahn, Tae-Yeon
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.393-403
    • /
    • 2008
  • The relationship between precipitation and groundwater level and the correlation between the moving average of precipitation and goundwater level were analyzed for the southern area of Korean peninsular. There were somewhat different patterns of seasonal fluctuation of groundwater level data. The groundwater level data tends to decrease in dry spell and increase in wet spell however the range between maximum and minimum values is quite different for each gauging point. The maximum correlation coefficient for each gauging station is obtained in a range of 20- to 130-day moving average period of precipitation. The critical infiltration, which is the maximum daily infiltration averaged throughout watershed, value is turned out to have the range of 10 to 90 mm and the moving average period is 10 to 150 days. We could have stronger correlation when we consider critical infiltration and modify the original precipitation data than we use original precipitation data.

Developing Extreme Drought Scenarios for Seoul based on the Long Term Precipitation Including Paleoclimatic Data (고기후 자료를 포함한 장기연속 강수자료에 의한 서울지역의 극한가뭄 시나리오 개발)

  • Jang, Ho-Won;Cho, Hyeong-Won;Kim, Tae-Woong;Lee, Joo-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.659-668
    • /
    • 2017
  • In this study, long-term rainfall data of more than 300 years including the paleoclimatic rainfall data from Chuk Woo Kee (1777-1907), the modern observed rainfall data (1908-2015), and the climate change scenario (2016-2099), which were provided by KMA (Korea Meteorological Agency), was used to analyze the statistical characteristics of the extreme drought in the Seoul., Annual average rainfall showed an increasing trend over a entire period, and Wavelet transform analysis of SPI (Standardized Precipitation Index) which is meteorological drought index, showed 64 to 80 months (5-6 Year) of drought periods for Chuk Woo Kee and KMA data, 96 to 128 months (8 to 10 years) of drought period for climate change data. The dry spell analysis showed that the drought occurrence frequency in the ancient period was high, but frequency was gradually decreased in the modern and future periods. In addition, through the analysis of the drought magnitude, 1901 was the extreme drought year in Seoul, and 1899-1907 was the worst consecutive 9 years long term drought in Seoul.

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation (다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.397-408
    • /
    • 2009
  • In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

A Variation of Summer Rainfall in Korea (한국의 여름철 강수량 변동 - 순별 강수량을 중심으로 -)

  • Lee Seungho;Kwon Won Tae
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.819-832
    • /
    • 2004
  • Daily rainfall data from 14 stations during 1941 to 2000 were analyzed in order to examine the characteristics of the variation of summer rainfall and the identify relationship between the variation of summer rainfall and the variation of SOI(Southern Oscillation Index) and NPI(North Pacific Index), global temperature. For further investigation, study period is divided into two 30 year intervals, 1941-1970 and 1971-2000. There are the trend of increase in August and decrease in September in the later period compared with the earlier one. It was Mid-west in August where there is the largest variation. It is related to the increase of the frequency of heavy rainfall. The second period of extreme rainfall by ten days is absent, or it change from early in September to late in August. According to the result, the dry spell in August disappears and Changma is continued to early in September. Gradually, there is change from negative (or positive) to positive (or negative) to the rainfall anomaly of the mid of August and the mid of September (or July). The correlation between the variation of rainfall and oceanic variation and global temperature is statistically significant.

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF